Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
2.
Eur J Intern Med ; 124: 89-98, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402021

RESUMO

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.


Assuntos
Asma , Citocinas , Interleucina-4 , Lipopolissacarídeos , Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , Linfopoietina do Estroma do Timo , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Asma/metabolismo , Asma/imunologia , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Lipopolissacarídeos/farmacologia , Interleucina-13/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas
4.
Front Immunol ; 14: 1257398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841257

RESUMO

Introduction: Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods: In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1ß, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results: Our results showed increased serum concentrations of TNF-α, IL-1ß, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1ß, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion: These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.


Assuntos
Imunodeficiência de Variável Comum , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Lipopolissacarídeos , Receptores de Lipopolissacarídeos , Imunoglobulinas
5.
Cancer Immunol Immunother ; 72(10): 3363-3376, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525065

RESUMO

Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.


Assuntos
Armadilhas Extracelulares , Melanoma , Humanos , Neutrófilos/patologia , Quimiotaxia , Melanoma/patologia , Microambiente Tumoral
6.
Eur J Intern Med ; 117: 111-118, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500310

RESUMO

Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant ß-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.


Assuntos
Mastocitose , Linfopoietina do Estroma do Timo , Humanos , Triptases/metabolismo , Citocinas/metabolismo , Mastocitose/metabolismo , Mastócitos/metabolismo
7.
Front Immunol ; 14: 1190034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205111

RESUMO

Basophils bind IgE via FcεRI-αßγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.


Assuntos
Hipersensibilidade , Doenças Parasitárias , Animais , Camundongos , Humanos , Basófilos , Receptores de IgE/metabolismo , Mastócitos , Doenças Parasitárias/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769357

RESUMO

COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1ß release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo
9.
Immunol Res ; 71(1): 70-82, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385678

RESUMO

High levels of human group IIA secreted phospholipase A2 (hGIIA) have been associated with various inflammatory disease conditions. We have recently shown that hGIIA activity and concentration are increased in the plasma of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) and negatively correlate with C1-INH plasma activity. In this study, we analyzed whether the presence of both hGIIA and C1-INH impairs their respective function on immune cells. hGIIA, but not recombinant and plasma-derived C1-INH, stimulates the production of IL-6, CXCL8, and TNF-α from peripheral blood mononuclear cells (PBMCs). PBMC activation mediated by hGIIA is blocked by RO032107A, a specific hGIIA inhibitor. Interestingly, C1-INH inhibits the hGIIA-induced production of IL-6, TNF-α, and CXCL8, while it does not affect hGIIA enzymatic activity. On the other hand, hGIIA reduces the capacity of C1-INH at inhibiting C1-esterase activity. Spectroscopic and molecular docking studies suggest a possible interaction between hGIIA and C1-INH but further experiments are needed to confirm this hypothesis. Together, these results provide evidence for a new interplay between hGIIA and C1-INH, which may be important in the pathophysiology of hereditary angioedema.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Fosfolipases A2 do Grupo II , Humanos , Interleucina-6 , Leucócitos Mononucleares , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Proteína Inibidora do Complemento C1/química , Proteína Inibidora do Complemento C1/metabolismo , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/metabolismo
10.
Biomedicines ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359283

RESUMO

Cancer-related inflammation has recently emerged as an important component of cancer pathogenesis that is able to promote tumor initiation and progression, and the acquisition of the known hallmark capabilities, including evasion from immunosurveillance. Several soluble and cellular mediators participate in tumor microenvironment formation, leading to cancer initiation and progression. In this view, Tumor-Associated Macrophages (TAMs) are pivotal players and, due to their characteristic plasticity, can acquire a variety of distinct phenotypes and contribute in different ways to the different phases of carcinogenesis. Different stimuli have been shown to modulate macrophage polarization. Secreted phospholipase A2 enzymes (sPLA2s) exert multiple biological effects on cancer-related inflammation due to their enzymatic activity and ability to activate inflammatory cells by non-enzymatic mechanisms. Among the different sPLA2 isoforms, several studies have suggested that group IIA and group X are mainly involved in a wide variety of cancer types. A deeper insight into the molecular mechanisms regulating the link between tumor-infiltrating immune cells and cancer could lead to identifying new prognostic/predictive biomarkers and a broader view of cancer immunotherapy.

11.
Eur J Intern Med ; 106: 111-119, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280524

RESUMO

BACKGROUND: Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. A proportion of patients with HF have a normal ventricular ejection fraction (EF), referred to as HF with preserved EF (HFpEF), as opposed to patients with HF with reduced ejection fraction (HFrEF). HFpEF currently accounts for about 50% of all HF patients, and its prevalence is rising. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. METHODS: The aim of this study was to analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with HFpEF and HFrEF compared to healthy controls. RESULTS: The concentration of ANGPT1 was reduced in HFrEF compared to HFpEF patients and healthy controls. ANGPT2 levels were increased in both HFrEF and HFpEF subjects compared to controls. The ANGPT2/ANGPT1 ratio was increased in HFrEF patients compared to controls. The concentrations of both VEGF-A and VEGF-C did not differ among the three groups examined. VEGF-D was increased in both HFrEF and HFpEF patients compared to controls. Plasma activity of sPLA2 was increased in HFrEF but not in HFpEF patients compared to controls. CONCLUSIONS: Our results indicate that three different classes of proinflammatory regulators of vascular permeability and smoldering inflammation are selectively altered in HFrEF or HFpEF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.


Assuntos
Insuficiência Cardíaca , Fosfolipases A2 Secretórias , Humanos , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular , Fator D de Crescimento do Endotélio Vascular , Fator C de Crescimento do Endotélio Vascular , Angiopoietinas , Células Endoteliais , Prognóstico , Fosfolipases
12.
Front Immunol ; 13: 962669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016960

RESUMO

Melanoma displays a rising incidence, and the mortality associated with metastatic form remains high. Monoclonal antibodies that block programmed death (PD-1) and PD Ligand 1 (PD-L1) network have revolutionized the history of metastatic disease. PD-L1 is expressed on several immune cells and can be also expressed on human neutrophils (PMNs). The role of peripheral blood PMNs as predictive biomarkers in anti-PD-1 therapy of melanoma is largely unknown. In this study, we aimed to determine activation status and PD-L1 expression on human neutrophils as possible novel biomarkers in stage IV melanoma patients (MPs). We found that PMNs from MPs displayed an activated phenotype and increased PD-L1 levels compared to healthy controls (HCs). Patients with lower PD-L1+ PMN frequencies displayed better progression-free survival (PFS) and overall survival (OS) compared to patients with high PD-L1+ PMN frequencies. Multivariate analysis showed that PD-L1+ PMNs predicted patient outcome in BRAF wild type MP subgroup but not in BRAF mutated MPs. PD-L1+ PMN frequency emerges as a novel biomarker in stage IV BRAF wild type MPs undergoing anti-PD-1 immunotherapy. Our findings suggest further evaluation of the role of neutrophil subsets and their mediators in melanoma patients undergoing immunotherapy.


Assuntos
Melanoma , Nivolumabe , Antígeno B7-H1/genética , Biomarcadores , Humanos , Ligantes , Neutrófilos/metabolismo , Nivolumabe/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
13.
Environ Int ; 166: 107395, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839670

RESUMO

The anthropogenic particulate matter (PM), suspended air dust that can be inhaled by humans and deposited in the lungs, is one of the main pollutants in the industrialized cities atmosphere. Recent studies have shown that PM has adverse effects on respiratory diseases. These effects are mainly due to the ultrafine particles (PM0.1, PM < 100 nm), which, thanks to their PM size, are efficiently deposited in nasal, tracheobronchial, and alveolar regions. Pulmonary macrophages are a heterogeneous cell population distributed in different lung compartments, whose role in inflammatory response to injury is of particular relevance. In this study, we investigated the effect of PM0.1 on Human Lung Macrophages (HLMs) activation evaluated as proinflammatory cytokines and chemokine release, Reactive Oxygen Species (ROS) production and intracellular Ca2+concentration ([Ca2+]i). Furthermore, PM0.1, after removal of organic fraction, was fractionated in nanoparticles both smaller (NP20) and bigger (NP100) than 20 nm by a properlydeveloped analytical protocol, allowed isolating their individual contribution. Interestingly, while PM0.1 and NP20 induced stimulatory effects on HLM cytokines release, NP100 had not effect. In particular, PM0.1 induced IL-6, IL-1ß, TNF-α, but not CXCL8, release from HLMs. Moreover, PM0.1, NP20 and NP100 did not induce ß-glucuronidase release, a preformed mediator contained in HLMs. The long time necessary for cytokines release (18 h) suggested that PM0.1 and NP20 could induce ex-novo production of the tested mediators. Accordingly, after 6 h of incubation, PM0.1 and NP20 induced mRNA expression of IL-6, TNF-α and IL-1ß. Moreover, NP20 induced ROS production and [Ca2+]i increase in a time-dependent manner, without producing cytotoxicity. Collectively, the present data highlight the main proinflammatory role of NP20 among PM fractions. This is particularly of concern because this fraction is not currently covered by legal limits as it is not easily measured at the exhausts by the available technical methodologies, suggesting that it is mandatory to search for new monitoring techniques and strategies for limiting NP20 formation.


Assuntos
Poluentes Atmosféricos , Macrófagos Alveolares , Material Particulado , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/farmacologia , Citocinas/metabolismo , Humanos , Interleucina-6 , Pulmão , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiologia , Tamanho da Partícula , Material Particulado/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Cells ; 11(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626756

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.


Assuntos
Linfangiogênese , Doença Pulmonar Obstrutiva Crônica , Células Endoteliais , Humanos , Inflamação , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular
15.
Biomedicines ; 10(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203640

RESUMO

Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors.

16.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440780

RESUMO

Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Citocinas/metabolismo , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/metabolismo , Microambiente Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Idoso , Proteínas Angiogênicas/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/farmacologia , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfangiogênese , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transdução de Sinais , Linfopoietina do Estroma do Timo
17.
Inflammopharmacology ; 29(4): 1201-1210, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34241784

RESUMO

Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.


Assuntos
Fatores Biológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Poríferos , Animais , Fatores Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Agentes de Imunomodulação/isolamento & purificação , Imunomodulação/efeitos dos fármacos , Imunomodulação/fisiologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/imunologia , Leucócitos Mononucleares/imunologia
18.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064197

RESUMO

The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.


Assuntos
Endocanabinoides/imunologia , Neoplasias , Receptor CB1 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/imunologia , Microambiente Tumoral/imunologia , Autofagia , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/imunologia , Neoplasias/patologia
19.
Biomedicines ; 9(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064389

RESUMO

BACKGROUND: Pulmonary macrophages are a highly heterogeneous cell population distributed in different lung compartments. METHODS: We separated two subpopulations of macrophages from human lung parenchyma according to flotation over density gradients. RESULTS: Two-thirds 65.4% of the lung macrophages have a density between 1.065 and 1.078 (high-density macrophages: HDMs), and the remaining one-third (34.6) had a density between 1.039 and 1.052 (low-density macrophages: LDMs). LDMs had a larger area (691 vs. 462 µm2) and cell perimeter (94 vs. 77 µm) compared to HDMs. A significantly higher percentage of HDMs expressed CD40, CD45, and CD86 compared to LDMs. In contrast, a higher percentage of LDMs expressed the activation markers CD63 and CD64. The release of TNF-α, IL-6, IL-10 and IL-12 induced by lipopolysaccharide (LPS) was significantly higher in HDMs than in LDMs. CONCLUSION: The human lung contains two subpopulations of macrophages that differ in buoyancy, morphometric parameters, surface marker expression and response to LPS. These subpopulations of macrophages probably play distinct roles in lung inflammation and immune responses.

20.
Clin Exp Med ; 21(3): 415-427, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33687603

RESUMO

Mastocytosis is a disorder characterized by the abnormal proliferation and/or accumulation of mast cells in different organs. More than 90% of patients with systemic mastocytosis have a gain-of-function mutation in codon 816 of the KIT receptor on mast cells (MCs). The symptoms of mastocytosis patients are related to the MC-derived mediators that exert local and distant effects. MCs produce angiogenic and lymphangiogenic factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (ANGPTs). Serum concentrations of VEGF-A, VEGF-C, VEGF-D, ANGPT1 and ANGPT2 were determined in 64 mastocytosis patients and 64 healthy controls. Intracellular concentrations and spontaneous release of these mediators were evaluated in the mast cell lines ROSAKIT WT and ROSA KIT D816V and in human lung mast cells (HLMCs). VEGF-A, ANGPT1, ANGPT2 and VEGF-C concentrations were higher in mastocytosis patients compared to controls. The VEGF-A, ANGPT2 and VEGF-C concentrations were correlated with the symptom severity. ANGPT1 concentrations were increased in all patients compared to controls. ANGPT2 levels were correlated with severity of clinical variants and with tryptase levels. VEGF-A, ANGPT1 and VEGF-C did not differ between indolent and advanced mastocytosis. ROSAKIT WT, ROSAKIT D816V and HLMCs contained and spontaneously released VEGFs and ANGPTs. Serum concentrations of VEGFs and ANGPTs are altered in mastocytosis patients.


Assuntos
Angiopoietinas/sangue , Mastocitose/metabolismo , Regulação para Cima , Fatores de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Feminino , Mutação com Ganho de Função , Humanos , Masculino , Mastocitose/sangue , Mastocitose/genética , Pessoa de Meia-Idade , Gravidade do Paciente , Proteínas Proto-Oncogênicas c-kit/genética , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA