Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Infect ; 89(3): 106229, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025408

RESUMO

INTRODUCTION: Despite antifungal advancements, candidaemia still has a high mortality rate of up to 40%. The ECMM Candida III study in Europe investigated the changing epidemiology and outcomes of candidaemia for better understanding and management of these infections. METHODS: In this observational cohort study, participating hospitals enrolled the first ten consecutive adults with blood culture-proven candidemia. Collected data included patient demographics, risk factors, hospital stay duration (follow-up of 90 days), diagnostic procedures, causative Candida spp., management details, and outcome. Controls were included in a 1:1 fashion from the same hospitals. The matching process ensured similarity in age (10-year range), primary underlying disease, hospitalization in intensive care versus non-ICU ward, and major surgery within 2 weeks before candidemia between cases and controls. Overall and attributable mortality were described, and a survival probability for cases and controls was performed. RESULTS: One hundred seventy-one pairs consisting of patients with candidemia and matched controls from 28 institutions were included. In those with candidemia, overall mortality was 40.4%. Attributable mortality was 18.1% overall but differed between causative Candida species (7.7% for Candida albicans, 23.7% for Candida glabrata/Nakaseomyces glabratus, 7.7% for Candida parapsilosis and 63.6% for Candida tropicalis). Regarding risk factors, the presence of a central venous catheter, total parenteral nutrition and acute or chronic renal disease were significantly more common in cases versus controls. Duration of hospitalization, and especially that of ICU stay, was significantly longer in candidemia cases (20 (IQR 10-33) vs 15 days (IQR 7-28); p = 0.004). CONCLUSIONS: Although overall and attributable mortality in this subgroup analysis of matched case/control pairs remains high, the attributable mortality appears to have decreased in comparison to historical cohorts. This decrease may be driven by improved prognosis of Candida albicans and Candida parapsilosis candidemia; whereas candidemia due to other Candida spp. exhibits a much higher attributable mortality.


Assuntos
Candida , Candidemia , Humanos , Candidemia/mortalidade , Candidemia/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Europa (Continente)/epidemiologia , Idoso , Fatores de Risco , Estudos de Coortes , Candida/isolamento & purificação , Candida/classificação , Adulto , Idoso de 80 Anos ou mais , Antifúngicos/uso terapêutico , Estudos de Casos e Controles
2.
J Fungi (Basel) ; 6(4)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371513

RESUMO

Triazoles remain first-line agents for antifungal prophylaxis in high-risk haemato-oncology patients, but their use is increasingly contraindicated due to drug-drug interactions and additive toxicities with novel treatments. In this retrospective, single-centre, observational study, we present our eight-year experience of antifungal prophylaxis using intermittent high-dose liposomal Amphotericin B (L-AmB). All adults identified through our Antifungal Stewardship Programme as receiving L-AmB prophylaxis at 7.5 mg/kg once-weekly between February 2012 and January 2020 were included. Adverse reactions, including infusion reactions, electrolyte loss, and nephrotoxicity, were recorded. 'Breakthrough' invasive fungal infection (IFI) occurring within four weeks of L-AmB was classified using European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. Moreover, 114 courses of intermittent high-dose L-AmB prophylaxis administered to 92 unique patients were analysed. Hypokalaemia was the most common grade 3-4 adverse event, with 26 (23%) courses. Grade 3 nephrotoxicity occurred in 8 (7%) and reversed in all six patients surviving to 90 days. There were two (1.8%) episodes of breakthrough IFI, one 'probable' and one 'possible'. In this study, the largest evaluation of intermittent high-dose L-AmB prophylaxis conducted to date, toxicity was manageable and reversible and breakthrough IFI was rare. L-AmB prophylaxis represents a viable alternative for patients with a contraindication to triazoles.

3.
Hum Mutat ; 40(8): 1063-1070, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045292

RESUMO

Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.


Assuntos
DNA Helicases/genética , Nanismo/genética , Variação Genética , Microcefalia/genética , Adolescente , Alelos , DNA Helicases/química , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Insercional , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
4.
Nat Genet ; 51(1): 96-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478443

RESUMO

DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Nanismo/genética , Mutação com Ganho de Função/genética , Microcefalia/genética , Proteínas do Grupo Polycomb/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Feminino , Células HeLa , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503519

RESUMO

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Assuntos
Insuficiência Adrenal/genética , DNA Polimerase II/genética , Retardo do Crescimento Fetal/genética , Mutação/genética , Osteocondrodisplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Inibidor de Quinase Dependente de Ciclina p57/genética , Replicação do DNA/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
6.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
7.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

8.
Mol Cell ; 70(4): 707-721.e7, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754823

RESUMO

DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.


Assuntos
Carcinogênese/patologia , DNA Polimerase II/química , DNA Polimerase II/fisiologia , Replicação do DNA , Deficiências do Desenvolvimento/etiologia , Transtornos do Crescimento/etiologia , Leucopenia/etiologia , Animais , Carcinogênese/genética , Células Cultivadas , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína Supressora de Tumor p53/fisiologia
9.
Am J Med Genet A ; 176(2): 465-469, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29265708

RESUMO

RNU4ATAC pathogenic variants to date have been associated with microcephalic osteodysplastic primordial dwarfism, type 1 and Roifman syndrome. Both conditions are clinically distinct skeletal dysplasias with microcephalic osteodysplastic primordial dwarfism, type 1 having a more severe phenotype than Roifman syndrome. Some of the overlapping features of the two conditions include developmental delay, microcephaly, and immune deficiency. The features also overlap with Lowry Wood syndrome, another rare but well-defined skeletal dysplasia for which the genetic etiology has not been identified. Characteristic features include multiple epiphyseal dysplasia and microcephaly. Here, we describe three patients with Lowry Wood syndrome with biallelic RNU4ATAC pathogenic variants. This report expands the phenotypic spectrum for biallelic RNU4ATAC disorder causing variants and is the first to establish the genetic cause for Lowry Wood syndrome.


Assuntos
Cardiomiopatias/genética , Nanismo/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia/genética , Osteocondrodisplasias/genética , RNA Nuclear Pequeno/genética , Doenças Retinianas/genética , Adolescente , Cardiomiopatias/fisiopatologia , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Nanismo/fisiopatologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Transtornos do Crescimento/fisiopatologia , Humanos , Síndromes de Imunodeficiência/fisiopatologia , Deficiência Intelectual/fisiopatologia , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Microcefalia/fisiopatologia , Mutação , Osteocondrodisplasias/fisiopatologia , Fenótipo , Doenças da Imunodeficiência Primária , Doenças Retinianas/fisiopatologia
10.
Am J Hum Genet ; 98(4): 615-26, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26996948

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310(∗)) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability.


Assuntos
Variação Genética , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Manosiltransferases/genética , Hipotonia Muscular/genética , Convulsões/genética , Anormalidades Múltiplas/genética , Adolescente , Linhagem Celular Tumoral , Criança , Consanguinidade , Egito , Técnicas de Genotipagem , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Lactente , Japão , Mutação , Paquistão , Linhagem , Adulto Jovem
12.
J Med Genet ; 52(12): 797-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424145

RESUMO

BACKGROUND: The genetic aetiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. METHODS: Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. RESULTS: In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic homologous to the E6-AP carboxyl terminus (HECT) domain was present; western blot analysis of patient cells revealed an absence of detectable HACE1 protein. CONCLUSION: HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Ubiquitina-Proteína Ligases/deficiência , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genes Recessivos , Humanos , Lactente , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Síndrome , Ubiquitina-Proteína Ligases/genética
13.
Nat Cell Biol ; 17(8): 1074-1087, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167768

RESUMO

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


Assuntos
Cílios/genética , Transtornos da Motilidade Ciliar/genética , Marcadores Genéticos , Testes Genéticos/métodos , Genômica/métodos , Células Fotorreceptoras , Interferência de RNA , Anormalidades Múltiplas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Doenças Cerebelares/genética , Cerebelo/anormalidades , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Bases de Dados Genéticas , Síndrome de Ellis-Van Creveld/genética , Anormalidades do Olho/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Renais Císticas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestrutura , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reprodutibilidade dos Testes , Retina/anormalidades , Fatores Supressores Imunológicos/genética , Fatores Supressores Imunológicos/metabolismo , Transfecção , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
BMC Med Genet ; 16: 8, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25928877

RESUMO

BACKGROUND: Raine syndrome (RS) is a rare autosomal recessive bone dysplasia typified by osteosclerosis and dysmorphic facies due to FAM20C mutations. Initially reported as lethal in infancy, survival is possible into adulthood. We describe the molecular analysis and clinical phenotypes of five individuals from two consanguineous Brazilian families with attenuated Raine Syndrome with previously unreported features. METHODS: The medical and dental clinical records were reviewed. Extracted deciduous and permanent teeth as well as oral soft tissues were analysed. Whole exome sequencing was undertaken and FAM20C cDNA sequenced in family 1. RESULTS: Family 1 included 3 siblings with hypoplastic Amelogenesis Imperfecta (AI) (inherited abnormal dental enamel formation). Mild facial dysmorphism was noted in the absence of other obvious skeletal or growth abnormalities. A mild hypophosphataemia and soft tissue ectopic mineralization were present. A homozygous FAM20C donor splice site mutation (c.784 + 5 g > c) was identified which led to abnormal cDNA sequence. Family 2 included 2 siblings with hypoplastic AI and tooth dentine abnormalities as part of a more obvious syndrome with facial dysmorphism. There was hypophosphataemia, soft tissue ectopic mineralization, but no osteosclerosis. A homozygous missense mutation in FAM20C (c.1487C > T; p.P496L) was identified. CONCLUSIONS: The clinical phenotype of non-lethal Raine Syndrome is more variable, including between affected siblings, than previously described and an adverse impact on bone growth and health may not be a prominent feature. By contrast, a profound failure of dental enamel formation leading to a distinctive hypoplastic AI in all teeth should alert clinicians to the possibility of FAM20C mutations.


Assuntos
Anormalidades Múltiplas/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Microcefalia/genética , Anormalidades da Boca/complicações , Mutação , Osteosclerose/genética , Linhagem , Fenótipo , Anormalidades Dentárias/complicações , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Fissura Palatina/complicações , Exoftalmia/complicações , Feminino , Humanos , Masculino , Microcefalia/complicações , Osteosclerose/complicações , Adulto Jovem
16.
Nat Genet ; 46(5): 510-515, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705253

RESUMO

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3ß (GSK-3ß). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3ß activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT-related megalencephaly syndromes.


Assuntos
Anormalidades Múltiplas/genética , Ciclina D2/genética , Hidrocefalia/genética , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/genética , Polidactilia/genética , Animais , Sequência de Bases , Western Blotting , Bromodesoxiuridina , Eletroporação , Exoma/genética , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA , Síndrome
17.
Nat Genet ; 44(9): 1035-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22842230

RESUMO

Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.


Assuntos
Amaurose Congênita de Leber/genética , Mutação , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Degeneração Retiniana/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Família , Feminino , Predisposição Genética para Doença , Células HeLa , Humanos , Amaurose Congênita de Leber/complicações , Masculino , Pessoa de Meia-Idade , Mutação/fisiologia , Nicotinamida-Nucleotídeo Adenililtransferase/fisiologia , Linhagem , Degeneração Retiniana/complicações , Transdução de Sinais/genética , Adulto Jovem
18.
Hum Mutat ; 33(8): 1175-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22553128

RESUMO

Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2)) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2), but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity.


Assuntos
Transportadores de Ânions Orgânicos/genética , Osteoartropatia Hipertrófica Primária/etiologia , Osteoartropatia Hipertrófica Primária/genética , Mielofibrose Primária/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Osteoartropatia Hipertrófica Primária/metabolismo , Prostaglandinas/metabolismo , Adulto Jovem
19.
Science ; 335(6071): 966-9, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22282472

RESUMO

Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.


Assuntos
Doenças Cerebelares/genética , Cílios/ultraestrutura , Evolução Molecular , Anormalidades do Olho/genética , Regulação da Expressão Gênica , Loci Gênicos , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Aminoácidos , Animais , Linhagem Celular , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Cílios/metabolismo , Sequência Conservada , DNA Intergênico , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Perfilação da Expressão Gênica , Heterogeneidade Genética , Humanos , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Família Multigênica , Mutação , Mutação de Sentido Incorreto , Fenótipo , Transporte Proteico , Retina/anormalidades , Retina/metabolismo , Retina/patologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura
20.
Hum Mol Genet ; 21(4): 776-83, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22068589

RESUMO

The atonal homolog 7 (ATOH7) gene encodes a transcription factor involved in determining the fate of retinal progenitor cells and is particularly required for optic nerve and ganglion cell development. Using a combination of autozygosity mapping and next generation sequencing, we have identified homozygous mutations in this gene, p.E49V and p.P18RfsX69, in two consanguineous families diagnosed with multiple ocular developmental defects, including severe vitreoretinal dysplasia, optic nerve hypoplasia, persistent fetal vasculature, microphthalmia, congenital cataracts, microcornea, corneal opacity and nystagmus. Most of these clinical features overlap with defects in the Norrin/ß-catenin signalling pathway that is characterized by dysgenesis of the retinal and hyaloid vasculature. Our findings document Mendelian mutations within ATOH7 and imply a role for this molecule in the development of structures at the front as well as the back of the eye. This work also provides further insights into the function of ATOH7, especially its importance in retinal vascular development and hyaloid regression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Análise Mutacional de DNA/métodos , Oftalmopatias/genética , Olho/embriologia , Mutação/genética , Consanguinidade , Olho/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Oftalmopatias/patologia , Proteínas do Olho/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Retina/patologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA