Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 13(4): 101963, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569365

RESUMO

Borrelia miyamotoi infection is an emerging tick-borne disease that causes hard tick-borne relapsing fever. B. miyamotoi is transmitted through the bite of ticks, including Ixodes persulcatus. Although accumulating evidence suggests that tick salivary proteins enhance the infectivity of other tick-borne pathogens, the association of B. miyamotoi with tick-derived proteins remains unknown. In this study, the effect of I. persulcatus sialostatin L2 (Ip-sL2), a tick-derived cystatin, on specific immunity to B. miyamotoi was preliminarily investigated in vitro. Mice were immunized with heat-killed B. miyamotoi and in vitro analyses of the splenocytes of the immunized mice indicated that the expression levels of the activation markers of CD11c+ and CD3+ cells were significantly upregulated by B. miyamotoi stimulation. Spleen cells from B. miyamotoi-immunized mice were used to determine whether Ip-sL2 regulates murine immune responses against B. miyamotoi. Treatment with Ip-sL2 in vitro inhibited the activation of CD11c+ and CD3+ cells as well as inflammatory cytokine production by cultured splenocytes. These findings show that Ip-sL2 has modulatory effects on murine immune responses to B. miyamotoi. Therefore, it is necessary to clarify in the future whether Ip-sL2 is involved in the enhanced infectivity of B. miyamotoi.


Assuntos
Borrelia , Ixodes , Febre Recorrente , Doenças Transmitidas por Carrapatos , Animais , Proteínas de Artrópodes , Ixodes/fisiologia , Camundongos
2.
J Biol Chem ; 298(3): 101599, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063504

RESUMO

Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.


Assuntos
Glucose , Rhipicephalus , Animais , Linhagem Celular , Gluconeogênese , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADP/metabolismo , Oxirredução , Rhipicephalus/metabolismo
3.
Ticks Tick Borne Dis ; 11(2): 101332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734217

RESUMO

Tick saliva contains immunosuppressants which are important to obtain a blood meal and enhance the infectivity of tick-borne pathogens. In Japan, Ixodes persulcatus is a major vector for Lyme borreliosis pathogens, such as Borrelia garinii, as well as for those causing relapsing fever, such as B. miyamotoi. To date, little information is available on bioactive salivary molecules, produced by this tick. Thus, in this study, we identified two proteins, I. persulcatus derived sialostatin L1 (Ip-sL1) and sL2 (Ip-sL2), as orthologs of I. scapularis derived sL1 and sL2. cDNA clones of Ip-sL1 and Ip-sL2 shared a high identity with sequences of sL1 and sL2 isolated from the salivary glands of I. scapularis. Semi-quantitative PCR revealed that Ip-sL1 and Ip-sL2 were expressed in the salivary glands throughout the life of the tick. In addition, Ip-sL1 and Ip-sL2 were expressed even before the ticks started feeding, and their expression continued during blood feeding. Recombinant Ip-sL1 and Ip-sL2 were developed to characterize the proteins via biological and immunological analyses. These analyses revealed that both Ip-sL1 and Ip-sL2 had inhibitory effects on cathepsins L and S. Ip-sL1 and Ip-sL2 inhibited the production of IP-10, TNFα, and IL-6 by LPS-stimulated bone-marrow-derived dendritic cells (BMDCs). Additionally, Ip-sL1 significantly impaired BMDC maturation. Taken together, these results suggest that Ip-sL1 and Ip-sL2 confer immunosuppressive functions and appear to be involved in the transmission of pathogens by suppressing host immune responses, such as cytokine production and dendritic cell maturation. Therefore, further studies are warranted to investigate the immunosuppressive functions of Ip-sL1 and Ip-sL2 in detail to clarify their involvement in pathogen transmission via I. persulcatus.


Assuntos
Proteínas de Artrópodes/imunologia , Cistatinas/imunologia , Imunidade Inata/fisiologia , Ixodes/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Alinhamento de Sequência
4.
Artigo em Inglês | MEDLINE | ID: mdl-30580107

RESUMO

The cattle tick R. microplus is the biggest obstacle to livestock rearing in tropical countries. It is responsible for billions of dollars in losses every year, affecting meat and milk production, beef and dairy cattle, and the leather industry. The lack of knowledge and strategies to combat the tick only increases the losses, it leads to successive and uncontrolled applications of acaricides, favouring the selection of strains resistant to commercially available chemical treatments. In this paper, we tested 3­bromopyruvate (3­BrPA), an alkylating agent with a high affinity for cysteine residues, on the R. microplus metabolism. We found that 3-BrPA was able to induce cell death in an assay using BME26 strain cell cultures derived from embryos, it was also able to reduce cellular respiration in developing embryos. 3-BrPA is a nonspecific inhibitor, affecting enzymes of different metabolic pathways in R. microplus. In our experiments, we demonstrated that 3-BrPA was able to affect the glycolytic enzyme hexokinase, reducing its activity by approximately 50%; and it strongly inhibited triose phosphate isomerase, which is an enzyme involved in both glycolysis and gluconeogenesis. Also, the mitochondrial respiratory chain was affected, NADH cytochrome c reductase (complex I-III) and succinate cytochrome c reductase (complex II-III) were strongly inhibited by 3-BrPA. Glutamate dehydrogenase was also affected by 3-BrPA, showing a gradual inhibition of activity in all the 3-BrPA concentrations tested. Altogether, these results show that 3-BrPA is a harmful compound to the tick organism.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Piruvatos/farmacologia , Rhipicephalus/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Consumo de Oxigênio
5.
Rev. bras. parasitol. vet ; 27(3): 259-266, July-Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-959194

RESUMO

Abstract The cattle tick Rhipicephalus (Boophilus) microplus is an ectoparasite capable of transmitting a large number of pathogens, causing considerable losses in the cattle industry, with substantial damage to livestock. Over the years, important stages of its life cycle, such as the embryo, have been largely ignored by researchers. Tick embryogenesis has been typically described as an energy-consuming process, sustaining cell proliferation, differentiation, and growth. During the embryonic stage of arthropods, there is mobilization of metabolites of maternal origin for the development of organs and tissues of the embryo. Glycogen resynthesis in late embryogenesis is considered as an effective indicator of embryonic integrity. In the cattle tick R.(B. (B.) microplus, glycogen resynthesis is sustained by protein degradation through the gluconeogenesis pathway at the end of the embryonic period. Despite recent advancements in research on tick energy metabolism at the molecular level, the dynamics of nutrient utilization during R. (B.) microplus embryogenesis is still poorly understood. The present review aims to describe the regulatory mechanisms of carbohydrate metabolism during maternal-zygotic transition and identify possible new targets for the development of novel drugs and other control measures against R. (B.) microplus infestations.


Resumo O carrapato bovino Rhipicephalus (B.) microplus é um ectoparasita capaz de transmitir diversos patógenos, sendo responsável por grandes perdas na pecuária pelos danos causados ao gado. Atualmente, muitos estudos têm negligenciado fases importantes do ciclo de vida deste parasita, como a fase embrionária. A embriogênese é classicamente descrita como um processo que demanda um consumo de energia, possibilitando a proliferação celular, diferenciação e crescimento. Além disso, em artrópodes, o estágio da embriogênese é caracterizado pela mobilização de metabolitos de origem materna para o desenvolvimento de novos tecidos e órgãos. A ressíntese de glicogênio no final da embriogênese tem sido descrita em diversas espécies de artrópodes, sendo considerada um indicador de integridade do embrião. No caso do R. (B.) microplus a ressíntese de glicogênio é sustentada pela degradação de proteínas durante a gliconeogênese, no terço final da embriogênese. Apesar dos recentes avanços, no estudo molecular e do metabolismo energético, os mecanismos envolvidos na dinâmica da utilização de diferentes substratos energéticos durante a embriogênese do carrapato R. (B.) microplus ainda é pouco entendido. Diante deste panorama, estudos que descrevam a regulação destes mecanismos e da associação do metabolismo de carboidratos com a transição materno zigótica, pode auxiliar na busca de novos alvos para o desenvolvimento de novos acaricidas e outras intervenções para o controle infestações de R. (B.) microplus.


Assuntos
Animais , Rhipicephalus/embriologia , Embrião não Mamífero/metabolismo , Metabolismo Energético/fisiologia , Gluconeogênese/fisiologia , Glucose/metabolismo , Rhipicephalus/metabolismo
6.
An Acad Bras Cienc ; 89(3): 1683-1690, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876386

RESUMO

Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.


Assuntos
Gluconeogênese/fisiologia , Glicogênio/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Coelhos
7.
An. acad. bras. ciênc ; 89(3): 1683-1690, July-Sept. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886764

RESUMO

ABSTRACT Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.


Assuntos
Animais , Masculino , Coelhos , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Gluconeogênese/fisiologia , Glicogênio/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Modelos Animais de Doenças
8.
Ticks Tick Borne Dis ; 8(3): 432-441, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28174118

RESUMO

Cystatins are cysteine peptidase inhibitors that in ticks mediate processes such as blood feeding and digestion. The ixodid tick Ixodes persulcatus is endemic to the Eurasia, where it is the principal vector of Lyme borreliosis. To date, no I. persulcatus cystatin has been characterized. In the present work, we describe three novel cystatins from I. persulcatus, named JpIpcys2a, JpIpcys2b and JpIpcys2c. In addition, the potential of tick cystatins as cross-protective antigens was evaluated by vaccination of hamsters using BrBmcys2c, a cystatin from Rhipicephalus microplus, against I. persulcatus infestation. Sequence analysis showed that motifs that are characteristic of cystatins type 2 are fully conserved in JpIpcys2b, while mutations are present in both JpIpcys2a and JpIpcys2c. Protein-protein docking simulations further revealed that JpIpcys2a, JpIpcys2b and JpIpcys2c showed conserved binding sites to human cathepsins L, all of them covering the active site cleft. Cystatin transcripts were detected in different I. persulcatus tissues and instars, showing their ubiquitous expression during I. persulcatus development. Serological analysis showed that although hamsters immunized with BrBmcys2c developed a humoral immune response, this response was not adequate to protect against a heterologous challenge with I. persulcatus adult ticks. The lack of cross-protection provided by BrBmcys2c immunization is perhaps linked to the fact that cystatins cluster into multigene protein families that are expressed differentially and exhibit functional redundancy. How to target such small proteins that are secreted in low quantities remains a challenge in the development of suitable anti-tick vaccine antigens.


Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Cistatinas/química , Cistatinas/genética , Ixodes/metabolismo , Infestações por Carrapato/prevenção & controle , Animais , Anticorpos/sangue , Anticorpos/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/isolamento & purificação , Sítios de Ligação , Catepsina L/química , Cricetinae , Humanos , Imunidade Humoral , Ixodes/imunologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Rhipicephalus/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 2922-2933, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27664315

RESUMO

BACKGROUND: Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS: In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS: Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS: Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE: This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Multimerização Proteica , Compostos de Sulfidrila/metabolismo , Carrapatos/enzimologia , Aminoácidos/metabolismo , Animais , Cálcio/farmacologia , Dissulfetos/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluoretos/farmacologia , Dissulfeto de Glutationa/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Oxidantes/farmacologia , Oxirredução , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Substâncias Redutoras/farmacologia
10.
PLoS One ; 10(6): e0130008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091260

RESUMO

RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.


Assuntos
Técnicas de Silenciamento de Genes , RNA de Cadeia Dupla/genética , Rhipicephalus/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Eletroporação , Feminino , Expressão Gênica , Quinases da Glicogênio Sintase/genética , Quinases da Glicogênio Sintase/metabolismo , Heptanos/química , Óvulo/química , Óvulo/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Solventes/química , Técnicas de Cultura de Tecidos , Ceras/química
11.
Parasit Vectors ; 8: 122, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25889092

RESUMO

BACKGROUND: Cystatins are a group of cysteine protease inhibitors responsible for physiological proteolysis regulation and present in a wide range of organisms. Studies about this class of inhibitors in parasites have contributed to clarify their roles in important physiological processes, like blood digestion and modulation of host immune response during blood feeding. Thus, cystatins are a subject of research on the development of new parasite control methods. Additionally, the characterization of proteins shared by different parasite species represents a valuable strategy to find potential targets in multi-species control methods. However, cystatin functions in ticks remain undetermined, especially in Rhipicephalus microplus and Ixodes ovatus, two species that affect livestock and human health, respectively. METHODS: Here we report the inhibitory profile of two R. microplus (BrBmcys2b and BrBmcys2c) and one I. ovatus (JpIocys2a) cystatins to commercial cathepsins B, C, and L. The presence of native cystatins in R. microplus tissues was analyzed using sera against recombinant BrBmcys2b and BrBmcys2c. Also, a peptide from JpIocys2a was synthesized for rabbit immunization, and this serum was used to analyze the cross antigenicity between R. microplus and I. ovatus cystatins. RESULTS: Enzymatic inhibition profile of tick cystatins shows a distinct modulation for cathepsins related to tick blood digestion and evasion of host immune response. Furthermore, BrBmcys2b was detected in saliva and different tissues along tick stages, while BrBmcys2c was detected mainly in gut from partially engorged R. microplus females, demonstrating a distinct pattern of cystatin expression, secretion and traffic between tick tissues. Moreover, phylogenetic analysis suggests that JpIocys2a belongs to the group of tick gut secreted cystatins. Finally, cross-antigenicity assays revealed that antibodies against the JpIocys2a peptide recognize native and recombinant R. microplus cystatins. CONCLUSION: The presence of these proteins in different tissues and their ability to differentially inhibit cathepsins suggest distinct roles for JpIocys2a, BrBmcys2b, and BrBmcys2c in blood digestion, egg and larvae development, and modulation of host immune response in tick physiology. The cross-antigenicity between native and recombinant cystatins supports further experiments using JpIocys2a, BrBmcys2b, and BrBmcys2c as vaccine antigens.


Assuntos
Cistatinas/imunologia , Imunização/veterinária , Ixodes/imunologia , Rhipicephalus/imunologia , Sequência de Aminoácidos , Animais , Sangue , Cricetinae , Reações Cruzadas , Digestão , Feminino , Interações Hospedeiro-Parasita , Humanos , Ixodes/genética , Ixodes/fisiologia , Masculino , Dados de Sequência Molecular , Filogenia , Coelhos , Proteínas Recombinantes , Rhipicephalus/genética , Rhipicephalus/fisiologia , Alinhamento de Sequência
12.
Int J Mol Sci ; 16(4): 6631-44, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25811926

RESUMO

Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum). A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.


Assuntos
Proteínas de Insetos , Oogênese , Polifosfatos/metabolismo , Pirofosfatases/genética , Tribolium/enzimologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Insetos/metabolismo , Filogenia , Pirofosfatases/metabolismo
13.
PLoS One ; 8(10): e76128, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146826

RESUMO

Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases essential for cell cycle progression. Herein, we describe the participation of CDKs in the physiology of Rhipicephalus microplus, the southern cattle tick and an important disease vector. Firstly, amino acid sequences homologous with CDKs of other organisms were identified from a R. microplus transcriptome database in silico. The analysis of the deduced amino acid sequences of CDK1 and CDK10 from R. microplus showed that both have caspase-3/7 cleavage motifs despite their differences in motif position and length of encoded proteins. CDK1 has two motifs (DKRGD and SAKDA) located opposite to the ATP binding site while CDK10 has only one motif (SLLDN) for caspase 3-7 near the ATP binding site. Roscovitine (Rosco), a purine derivative that inhibits CDK/cyclin complexes by binding to the catalytic domain of the CDK molecule at the ATP binding site, which prevents the transfer of ATP's γphosphoryl group to the substrate. To determine the effect of Rosco on tick CDKs, BME26 cells derived from R. microplus embryo cells were utilized in vitro inhibition assays. Cell viability decreased in the Rosco-treated groups after 24 hours of incubation in a concentration-dependent manner and this was observed up to 48 hours following incubation. To our knowledge, this is the first report on characterization of a cell cycle protein in arachnids, and the sensitivity of BME26 tick cell line to Rosco treatment suggests that CDKs are potential targets for novel drug design to control tick infestation.


Assuntos
Proteínas de Artrópodes/química , Proteína Quinase CDC2/química , Quinases Ciclina-Dependentes/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Rhipicephalus/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/classificação , Proteína Quinase CDC2/metabolismo , Caspases/química , Caspases/metabolismo , Domínio Catalítico , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/classificação , Quinases Ciclina-Dependentes/metabolismo , Escherichia coli/química , Escherichia coli/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Inibidores de Proteínas Quinases/química , Purinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Rhipicephalus/citologia , Rhipicephalus/enzimologia , Roscovitina , Glândulas Salivares/citologia , Glândulas Salivares/efeitos dos fármacos , Alinhamento de Sequência , Homologia Estrutural de Proteína
14.
Ticks Tick Borne Dis ; 4(6): 492-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24035585

RESUMO

Various classes of endopeptidases and their inhibitors facilitate blood feeding and digestion in ticks. Cystatins, a family of tight-binding and reversible inhibitors of cysteine endopeptidases, have recently been found in several tick tissues. Moreover, vaccine trials using tick cystatins have been found to induce protective immune responses against tick infestation. However, the mode of action of tick cystatins is still poorly understood, limiting the elucidation of their physiological role. Against this background, we have investigated sequence characteristics and immunogenic properties of 5 putative cystatins from Rhipicephalus (Boophilus) microplus from Brazil and Uruguay. The similarity of the deduced amino acid sequences among cystatins from the Brazilian tick strain was 27-42%, all of which had a secretory signal peptide. The cystatin motif (QxVxG), a glycine in the N-terminal region, and the PW motif in the second hairpin loop in the C-terminal region are highly conserved in all 5 cystatins identified in this study. Four cysteine residues in the C terminus characteristic of type 2 cystatins are also present. qRT-PCR revealed differential expression patterns among the 5 cystatins identified, as well as variation in mRNA transcripts present in egg, larva, gut, salivary glands, ovary, and fat body tissues. One R. microplus cystatin showed 97-100% amino acid similarity between Brazilian and Uruguayan isolates. Furthermore, by in silico analysis, antigenic amino acid regions from R. microplus cystatins showed high degrees of homology (54-92%) among Rhipicephalus spp. cystatins. Three Brazilian R. microplus cystatins were expressed in Escherichia coli, and immunogenicity of the recombinant proteins were determined by vaccinating mice. Western blotting using mice sera indicated cross-reactivity between the cystatins, suggesting shared epitopes. The present characterization of Rhipicephalus spp. cystatins represents an empirical approach in an effort to evaluate the physiological role of cystatins in a larger context of targeting them for use in future tick control strategies.


Assuntos
Doenças dos Bovinos/parasitologia , Cistatinas/química , Cistatinas/imunologia , Rhipicephalus/imunologia , Infestações por Carrapato/veterinária , Sequência de Aminoácidos , Animais , Brasil , Bovinos , Doenças dos Bovinos/imunologia , Biologia Computacional , Cistatinas/genética , DNA Complementar/química , DNA Complementar/genética , Feminino , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhipicephalus/química , Rhipicephalus/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia
15.
Int J Biol Sci ; 9(8): 842-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23983617

RESUMO

The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos.


Assuntos
Embrião não Mamífero/enzimologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Polifosfatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rhipicephalus/embriologia , Análise de Variância , Animais , Catalase/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Glutationa Redutase/metabolismo , Mitocôndrias/efeitos dos fármacos , Rhipicephalus/enzimologia , Espectrometria de Fluorescência , Superóxido Dismutase/metabolismo
16.
Biochim Biophys Acta ; 1830(3): 2574-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274741

RESUMO

BACKGROUND: Tick embryogenesis is a metabolically intensive process developed under tightly controlled conditions and whose components are poorly understood. METHODS: In order to characterize the role of AKT (protein kinase B) in glycogen metabolism and cell viability, glycogen determination, identification and cloning of an AKT from Rhipicephalus microplus were carried out, in parallel with experiments using RNA interference (RNAi) and chemical inhibition. RESULTS: A decrease in glycogen content was observed when AKT was chemically inhibited by 10-DEBC treatment, while GSK3 inhibition by alsterpaullone had an opposing effect. RmAKT ORF is 1584-bp long and encodes a polypeptide chain of 60.1 kDa. Phylogenetic and sequence analyses showed significant differences between vertebrate and tick AKTs. Either AKT or GSK3 knocked down cells showed a 70% reduction in target transcript levels, but decrease in AKT also reduced glycogen content, cell viability and altered cell membrane permeability. However, the GSK3 reduction promoted an increase in glycogen content. Additionally, either GSK3 inhibition or gene silencing had a protective effect on BME26 viability after exposure to ultraviolet radiation. R. microplus AKT and GSK3 were widely expressed during embryo development. Taken together, our data support an antagonistic role for AKT and GSK3, and strongly suggest that such a signaling axis is conserved in tick embryos, with AKT located upstream of GSK3. GENERAL SIGNIFICANCE: The AKT/GSK3 axis is conserved in tick in a way that integrates glycogen metabolism and cell survival, and exhibits phylogenic differences that could be important for the development of novel control methods.


Assuntos
Proteínas de Artrópodes/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio/metabolismo , Glicogenólise/genética , Proteínas Proto-Oncogênicas c-akt/genética , Rhipicephalus/genética , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/metabolismo , Benzazepinas/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Clonagem Molecular , Embrião não Mamífero , Regulação da Expressão Gênica/efeitos da radiação , Glicogênio/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogenólise/efeitos da radiação , Indóis/farmacologia , Fases de Leitura Aberta , Oxazinas/farmacologia , Filogenia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Rhipicephalus/embriologia , Rhipicephalus/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação , Especificidade da Espécie , Raios Ultravioleta
17.
Vaccine ; 30(48): 6912-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22981764

RESUMO

The tick Rhipicephalus (Boophilus) microplus is a blood-sucking ectoparasite of cattle that severely impairs livestock production. Studies on tick immunological control address mostly single-antigen vaccines. However, from the commercial standpoint, so far no single-antigen vaccine has afforded appropriate protection against all R. microplus populations. In this context, multi-antigen cocktails have emerged as a way to enhance vaccine efficacy. In this work, a multi-antigenic vaccine against R. microplus was analyzed under field conditions in naturally infested cattle. The vaccine was composed by three tick recombinant proteins from two tick species that in previous single-vaccination reports provided partial protection of confined cattle against R. microplus infestations: vitellin-degrading cysteine endopeptidase (VTDCE) and boophilus yolk pro-cathepsin (BYC) from R. microplus, and glutathione S-transferase from Haemaphysalis longicornis (GST-Hl). Increased antibody levels against three proteins were recorded after immunizations, with a distinct humoral immune response dynamics for each protein. Compared to the control group, a statistically significant lower number of semi-engorged female ticks were observed in vaccinated cattle after two inoculations. This reduction persisted for 3 months, ranging from 35.3 to 61.6%. Furthermore, cattle body weight gain was significantly higher in vaccinated animals when compared to control cattle. Compared to the single-antigen vaccines composed by VTDCE, BYC or GST-Hl, this three-antigen vaccine afforded higher protection levels against R. microplus infestations.


Assuntos
Proteínas de Artrópodes/imunologia , Doenças dos Bovinos/prevenção & controle , Ectoparasitoses/veterinária , Rhipicephalus/imunologia , Vacinação/métodos , Vacinas/imunologia , Animais , Proteínas de Artrópodes/administração & dosagem , Bovinos , Ectoparasitoses/prevenção & controle , Feminino , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Vacinas/administração & dosagem
18.
Vet Immunol Immunopathol ; 148(1-2): 149-56, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21620488

RESUMO

Rhipicephalus (Boophilus) microplus is one of the most widely distributed tick in the world. The control of the parasite is based mainly on the use of chemical acaricides, which are produced from a limited set of molecules. These drugs induce selection of acaricide-resistant ticks, and are an important source of environmental pollution. An approach based on anti-tick vaccines may circumvent these obstacles. Characterization of the physiological function of tick molecules may be useful to develop new vaccines. Previously, we reported the ability of some tick proteins as inducers of protective immune response. Vaccination studies using tick proteins like native (nBYC), recombinant (rBYC) egg-yolk aspartic endopeptidase and cysteine endopeptidase (VTDCE) from R. microplus and glutathione S-transferase (Hl-GST) from Haemaphysalis longicornis demonstrated the immunogenicity and antigenicity of these proteins in bovines. Eventually, immunization with these proteins triggered a partial immune response against R. microplus infestation in cattle, manifested mainly as a reduction in egg fertility (7.7% and 13.9% for nBYC, 5.9% for rBYC; 4.7% for VTDCE, 7.9% for Hl-GST), and in the number of fully engorged ticks (18.2% for rBYC, 14.6% for VTDCE, 53% for Hl-GST). The data so far obtained suggest that these proteins have potential to be used as antigens in an anti-tick vaccine. Other proteins involved in tick embryogenesis also have this potential, like THAP and BmCl1, which are enzymes with key roles in vitellin and hemoglobin hydrolysis. Moreover, the identification of analogous proteins present in other tick species may bring information about the way to develop a vaccine against multiple tick species which can help to solve the problem faced by numerous countries where animals are parasitized by more than one tick species. The aim of the present review is to comprehensibly summarize the data obtained in the last few years by our collaborative research, discussing the efforts we have made to find antigens efficient enough for a cattle tick-controlling vaccine. This review discusses tick physiology studies aimed at the selection of possible targets, characterization of the selected proteins with emphasis on their biochemical and immunological aspects and results of vaccine trials on bovines.


Assuntos
Ácido Aspártico Endopeptidases/imunologia , Doenças dos Bovinos/parasitologia , Cisteína Endopeptidases/imunologia , Proteínas do Ovo/imunologia , Rhipicephalus/imunologia , Infestações por Carrapato/veterinária , Vacinas/imunologia , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Imunização/veterinária , Rhipicephalus/enzimologia , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle
19.
Vet Parasitol ; 184(2-4): 238-47, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22001703

RESUMO

The present paper presents the partial characterization of a family I inorganic pyrophosphatase from the hard tick Rhipicephalus (Boophilus) microplus (BmPPase). The BmPPase gene was cloned from the tick embryo and sequenced. The deduced amino acid sequence shared high similarity with other eukaryotic PPases, on the other hand, BmPPase presented some cysteine residues non-conserved in other groups. This pyrophosphatase is inhibited by Ca(2+), and the inhibition is antagonized by Mg(2+), suggesting that the balance between free Ca(2+) and free Mg(2+) in the eggs could be involved in BmPPase activity control. We observed that the BmPPase transcripts are present in the fat body, midgut and ovary of ticks, in two developmental stages (partially and fully engorged females). However, higher transcription amounts were found in ovary from fully engorged females. BmPPase activity was considerably abolished by the thiol reagent dithionitrobenzoic acid (DTNB), suggesting that cysteine residues are exposed in its structure. Therefore, these cysteine residues play a critical role in the structural stability of BmPPase. Molecular dynamics simulation analysis indicates that BmPPase is the first Family I PPase that could promote disulfide bonds between cysteine residues 138-339 and 167-295. Finally, we believe that these cysteine residues exposed in the BmPPase structure can play an important controlling role regarding enzyme activity, which would be an interesting mechanism of redox control. The results presented here also indicate that this enzyme can be involved in embryogenesis of this arthropod, and may be useful as a target in the development of new tick control strategies.


Assuntos
Pirofosfatase Inorgânica/genética , Rhipicephalus/enzimologia , Rhipicephalus/genética , Sequência de Aminoácidos , Animais , Bovinos , Ácido Ditionitrobenzoico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Pirofosfatase Inorgânica/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Rhipicephalus/classificação , Rhipicephalus/embriologia , Alinhamento de Sequência
20.
Int J Mol Sci ; 12(6): 3525-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747692

RESUMO

The physiological roles of polyphosphates (polyP) recently found in arthropod mitochondria remain obscure. Here, the relationship between the mitochondrial membrane exopolyphosphatase (PPX) and the energy metabolism of hard tick Rhipicephalus microplus embryos are investigated. Mitochondrial respiration was activated by adenosine diphosphate using polyP as the only source of inorganic phosphate (P(i)) and this activation was much greater using polyP(3) than polyP(15). After mitochondrial subfractionation, most of the PPX activity was recovered in the membrane fraction and its kinetic analysis revealed that the affinity for polyP(3) was 10 times stronger than that for polyP(15). Membrane PPX activity was also increased in the presence of the respiratory substrate pyruvic acid and after addition of the protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Furthermore, these stimulatory effects disappeared upon addition of the cytochrome oxidase inhibitor potassium cyanide and the activity was completely inhibited by 20 µg/mL heparin. The activity was either increased or decreased by 50% upon addition of dithiothreitol or hydrogen peroxide, respectively, suggesting redox regulation. These results indicate a PPX activity that is regulated during mitochondrial respiration and that plays a role in adenosine-5'-triphosphate synthesis in hard tick embryos.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Embrião não Mamífero/metabolismo , Mitocôndrias/enzimologia , Rhipicephalus/crescimento & desenvolvimento , Hidrolases Anidrido Ácido/química , Animais , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético , Heparina/química , Heparina/metabolismo , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Oxirredução , Polifosfatos/química , Polifosfatos/farmacologia , Cianeto de Potássio/química , Cianeto de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA