Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149248

RESUMO

Ovarian clear cell carcinoma (CCC) has an East Asian preponderance. It is associated with endometriosis, a benign condition where endometrial (inner lining of the uterus) tissue is found outside the uterus and on the peritoneal surface, in the abdominal or pelvic space. CCC is relatively more resistant to conventional chemotherapy compared to other ovarian cancer subtypes and is associated with a poorer prognosis. In this study, we recruited and obtained tumour tissues from seven patients across the four stages of CCC. The tumour and the tumour microenvironment (TME) from 7 CCC patients spanning clinical stages 1-4 were transcriptionally profiled using high-resolution scRNA-seq to gain insight into CCC's biological mechanisms. Firstly, we built a scRNA-seq resource for the CCC tumour microenvironment (TME). Secondly, we identified the different cell type proportions and found high levels of immune infiltration in CCC. Thirdly, since CCC is associated with endometriosis, we compared CCC with two publicly available endometriosis scRNA-seq datasets. The CCC malignant cells showed similarities with glandular secretory and ciliated epithelial cells found in endometriosis. Finally, we determined the differences in cell-cell communication between various cell types present in CCC TME and endometriosis conditions to gain insights into the transformations in CCC.

2.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195702

RESUMO

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Assuntos
Melanoma , Receptor de Fator de Crescimento Neural , Humanos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoproteção , Inibidores de Checkpoint Imunológico , Células T de Memória , Terapia de Imunossupressão , Imunoterapia , Receptores de Antígenos de Linfócitos T
3.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
4.
Sci Adv ; 9(37): eadi0197, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713482

RESUMO

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the most abundant DNA modifications that have important roles in gene regulation. Detailed studies of these different epigenetic marks aimed at understanding their combined effects and dynamic interconversion are, however, hampered by the inability of current methods to simultaneously measure both modifications, particularly in samples with limited quantities. We present DNA analysis by restriction enzyme for simultaneous detection of multiple epigenomic states (DARESOME), an assay based on modification-sensitive restriction digest and sequential tag ligation that can concurrently perform quantitative profiling of unmodified cytosine, 5mC, and 5hmC in CCGG sites genome-wide. DARESOME reveals the opposing roles of 5mC and 5hmC in gene expression regulation as well as their interconversion during aging in mouse brain. Implementation of DARESOME in single cells demonstrates pronounced 5hmC strand bias that reflects the semiconservative replication of DNA. Last, we showed that DARESOME enables integrative genomic, 5mC, and 5hmC profiling of cell-free DNA that uncovered multiomics cancer signatures in liquid biopsy.


Assuntos
Ácidos Nucleicos Livres , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Epigenômica , Biópsia Líquida , Genômica , Envelhecimento
5.
J Extracell Vesicles ; 12(8): e12354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553837

RESUMO

Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.


Assuntos
Aterosclerose , Vesículas Extracelulares , Animais , Camundongos , Células Espumosas/metabolismo , Células Espumosas/patologia , Heme/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Eritrócitos/metabolismo , Endocitose
7.
Stem Cell Reports ; 18(2): 463-474, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36638791

RESUMO

A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.


Assuntos
Células-Tronco Embrionárias Murinas , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Transcriptoma , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Cromatina/metabolismo
9.
Stem Cell Reports ; 16(1): 182-197, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306988

RESUMO

Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks. Differentiation of the best-performing hiPSCs generated 0.85 billion erythroblasts in 50 mL cultures with cell densities approaching 1.7 × 107 cells/mL. Functional (oxygen binding, hemoglobin characterization, membrane integrity, and fluctuations) and transcriptomics evaluations showed minimal differences between hiPSC-derived and adult-derived RBCs. The scalable agitation suspension culture differentiation process we describe here could find applications in future large-scale production of RBCs in controlled bioreactors.


Assuntos
Técnicas de Cultura de Células/métodos , Eritrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células Cultivadas , Eritrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma
10.
Stem Cell Reports ; 14(2): 210-225, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32004493

RESUMO

The effects of ascorbate on adult cell fate specification remain largely unknown. Using our stepwise and chemically defined system to derive lateral mesoderm progenitors from human pluripotent stem cells (hPSCs), we found that ascorbate increased the expression of mesenchymal stromal cell (MSC) markers, purity of MSCs, the long-term self-renewal and osteochondrogenic capacity of hPSC-MSCs in vitro. Moreover, ascorbate promoted MSC specification in an iron-dependent fashion, but not in a redox-dependent manner. Further studies revealed that iron synergized with ascorbate to regulate hPSC-MSC histone methylation, promote their long-term self-renewal, and increase their osteochondrogenic capacity. We found that one of the histone demethylases affected by ascorbate, KDM4B, was necessary to promote the specification of hPSC-MSCs. This mechanistic understanding led to the metabolic optimization of hPSC-MSCs with an extended lifespan in vitro and the ability to fully repair cartilage defects upon transplantation in vivo. Our results highlight the importance of ascorbate and iron metabolism in adult human cell fate specification.


Assuntos
Ácido Ascórbico/farmacologia , Osso e Ossos/citologia , Autorrenovação Celular/efeitos dos fármacos , Ferro/farmacologia , Células-Tronco Mesenquimais/citologia , Ativinas/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Cartilagem/patologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas Wnt/metabolismo , Cicatrização/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
11.
FEBS Lett ; 593(23): 3244-3252, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31691960

RESUMO

Blood reprogramming, in which induced pluripotent stem cells (iPSCs) are derived from haematopoietic lineages, has rapidly advanced over the past decade. Since the first report using human blood, haematopoietic cell types from various sources, such as the peripheral bone marrow and cord blood, have been successfully reprogrammed. The volume of blood required has also decreased, from around tens of millilitres to a single finger-prick drop. Besides, while early studies were limited to reprogramming methods relying on viral integration, nonintegrating reprogramming systems for blood lineages have been subsequently established. Together, these improvements have made feasible the future clinical applications of blood-derived iPSCs. Here, we review the progress in blood reprogramming from various perspectives, including the starting materials and subsequent reprogramming strategies. We also discuss the downstream applications of blood-derived iPSCs, highlighting their clinical value in terms of disease modelling and therapeutic development.


Assuntos
Células Sanguíneas/metabolismo , Reprogramação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos
12.
Biotechnol Adv ; 36(8): 2118-2128, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273713

RESUMO

In vitro generation of red blood cells (RBCs) has the potential to circumvent the shortfalls in global demand for blood for transfusion applications. The conventional approach for RBC generation has been from differentiation of hematopoietic stem cells (HSCs) derived from cord blood, adult bone marrow or peripheral blood. More recently, RBCs have been generated from human induced pluripotent stem cells (hiPSCs) as well as from immortalized adult erythroid progenitors. In this review, we highlight the recent advances to RBC generation from these different approaches and discuss the challenges and new strategies that can potentially make large-scale in vitro generation of RBCs a feasible approach.


Assuntos
Técnicas de Cultura de Células , Eritrócitos , Medicina Transfusional , Animais , Diferenciação Celular , Sangue Fetal/citologia , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos
13.
Nat Commun ; 9(1): 1537, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670118

RESUMO

H3.3 is a histone variant, which is deposited on genebodies and regulatory elements, by Hira, marking active transcription. Moreover, H3.3 is deposited on heterochromatin by Atrx/Daxx complex. The exact role of H3.3 in cell fate transition remains elusive. Here, we investigate the dynamic changes in the deposition of the histone variant H3.3 during cellular reprogramming. H3.3 maintains the identities of the parental cells during reprogramming as its removal at early time-point enhances the efficiency of the process. We find that H3.3 plays a similar role in transdifferentiation to hematopoietic progenitors and neuronal differentiation from embryonic stem cells. Contrastingly, H3.3 deposition on genes associated with the newly reprogrammed lineage is essential as its depletion at the later phase abolishes the process. Mechanistically, H3.3 deposition by Hira, and its K4 and K36 modifications are central to the role of H3.3 in cell fate conversion. Finally, H3.3 safeguards fibroblast lineage by regulating Mapk cascade and collagen synthesis.


Assuntos
Linhagem da Célula , Chaperonas de Histonas/metabolismo , Histonas/química , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Imunoprecipitação da Cromatina , Colágeno/química , Fibroblastos/metabolismo , Células HEK293 , Heterocromatina , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Neurônios/metabolismo , Nucleossomos , Ligação Proteica , Retroviridae/genética , Software , Transcriptoma
14.
Biotechnol J ; 13(4): e1700567, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330927

RESUMO

Anticipated shortages in donated blood supply have prompted investigation of alternative approaches for in vitro production of red blood cells (RBCs), such as expansion of conditional immortalization erythroid progenitors. However, there is a bioprocessing challenge wherein factors promoting maximal cell expansion and growth-limiting inhibitory factors are yet to be investigated. The authors use an erythroblast cell line (ImEry) derived from immortalizing CD71+CD235a+ erythroblast from adult peripheral blood for optimization of expansion culture conditions. Design of experiments (DOE) is used in media formulation to explore relationships and interactive effects between factors which affect cell expansion. Our in-house optimized medium formulation produced significantly higher cell densities (3.62 ± 0.055) × 106 cells mL-1 , n = 3) compared to commercial formulations (2.07 ± 0.055) × 106 cells mL-1 , n = 3; at 209 h culture). Culture media costs per unit of blood is shown to have a 2.96-3.09 times cost reduction. As a proof of principle for scale up, ImEry are expanded in a half-liter stirred-bioreactor under controlled settings. Growth characteristics, metabolic, and molecular profile of the cells are evaluated. ImEry has identical O2 binding capacity to adult erythroblasts. Amino acid supplementation results in further yield improvements. The study serves as a first step for scaling up erythroblast expansion in controlled bioreactors.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Meios de Cultura Livres de Soro/química , Eritroblastos/citologia , Reatores Biológicos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Eritroblastos/química , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteína bcl-X/genética
15.
Nat Commun ; 7: 13396, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869129

RESUMO

Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into 'induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors.


Assuntos
Reprogramação Celular , Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/fisiologia , Acetilcolinesterase/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular , Regulação da Expressão Gênica , Genômica , Humanos , Megacariócitos/fisiologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Células Mieloides/fisiologia , Fagócitos/fisiologia , Análise Serial de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Clin Invest ; 126(10): 4045-4060, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27643433

RESUMO

Transcriptional reactivation of telomerase reverse transcriptase (TERT) reconstitutes telomerase activity in the majority of human cancers. Here, we found that ectopic TERT expression increases cell proliferation, while acute reductions in TERT levels lead to a dramatic loss of proliferation without any change in telomere length, suggesting that the effects of TERT could be telomere independent. We observed that TERT determines the growth rate of cancer cells by directly regulating global protein synthesis independently of its catalytic activity. Genome-wide TERT binding across 5 cancer cell lines and 2 embryonic stem cell lines revealed that endogenous TERT, driven by mutant promoters or oncogenes, directly associates with the RNA polymerase III (pol III) subunit RPC32 and enhances its recruitment to chromatin, resulting in increased RNA pol III occupancy and tRNA expression in cancers. TERT-deficient mice displayed marked delays in polyomavirus middle T oncogene-induced (PyMT-induced) mammary tumorigenesis, increased survival, and reductions in tRNA levels. Ectopic expression of either RPC32 or TERT restored tRNA levels and proliferation defects in TERT-depleted cells. Finally, we determined that levels of TERT and tRNA correlated in breast and liver cancer samples. Together, these data suggest the existence of a unifying mechanism by which TERT enhances translation in cells to regulate cancer cell proliferation.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , RNA de Transferência/genética , Telomerase/fisiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transplante de Neoplasias , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo
17.
Nat Methods ; 13(10): 833-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27525975

RESUMO

Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.


Assuntos
Epigênese Genética/ética , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Reprogramação Celular/genética , Impressões Digitais de DNA , Metilação de DNA/genética , Fibroblastos , Marcadores Genéticos , Humanos , Neoplasias Pulmonares/genética , Procedimentos Analíticos em Microchip/métodos
18.
Tissue Eng Part C Methods ; 22(8): 765-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392822

RESUMO

In vitro generation of red blood cells (RBCs) from human embryonic stem cells and human induced pluripotent stem cells appears to be a promising alternate approach to circumvent shortages in donor-derived blood supplies for clinical applications. Conventional methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) rely on embryoid body (EB) formation and/or coculture with xenogeneic cell lines. However, most current methods for hPSC expansion and EB formation are not amenable for scale-up to levels required for large-scale RBC generation. Moreover, differentiation methods that rely on xenogenic cell lines would face obstacles for future clinical translation. In this study, we report the development of a serum-free and chemically defined microcarrier-based suspension culture platform for scalable hPSC expansion and EB formation. Improved survival and better quality EBs generated with the microcarrier-based method resulted in significantly improved mesoderm induction and, when combined with hematopoietic differentiation, resulted in at least a 6-fold improvement in hematopoietic precursor expansion, potentially culminating in a 80-fold improvement in the yield of RBC generation compared to a conventional EB-based differentiation method. In addition, we report efficient terminal maturation and generation of mature enucleated RBCs using a coculture system that comprised primary human mesenchymal stromal cells. The microcarrier-based platform could prove to be an appealing strategy for future scale-up of hPSC culture, EB generation, and large-scale generation of RBCs under defined and xeno-free conditions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Corpos Embrioides/citologia , Eritrócitos/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Humanos
19.
Cell Stem Cell ; 19(1): 66-80, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320042

RESUMO

The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Carbono/metabolismo , Reprogramação Celular , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Metilação , Camundongos , Nucleotídeos/metabolismo , Oxirredução , Fosforilação Oxidativa , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Cell ; 163(1): 230-45, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365490

RESUMO

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Assuntos
Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Provírus/genética , Animais , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Células-Tronco de Carcinoma Embrionário/virologia , Epigênese Genética , Camundongos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA