Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958891

RESUMO

Myxofibrosarcoma (MFS) is a subtype of soft tissue sarcoma of connective tissue, which is characterized by large intra-tumor heterogeneity. Therapy includes surgical resection. Additional chemotherapy is of limited effect. In this study, we demonstrated the potent anticancer activity of shikonin derivatives in our MFS cellular model of tumor heterogeneity for developing a new therapeutic approach. The impact of shikonin and ß,ß-dimethylacrylshikonin (DMAS) on viability, apoptotic induction, MAPK phosphorylation, and DNA damage response were analyzed by means of two human MFS cell lines, MUG-Myx2a and MUG-Myx2b, derived from a singular tumor tissue specimen. MFS cells showed a dose-dependent inhibition of cell viability and a significant induction of apoptosis. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase in pAKT, pERK, pJNK, and pp38. DMAS and shikonin inhibited the activation of the two master upstream regulators of the DNA damage response, ATR and ATM. MUG-Myx2b, which contains an additional PTEN mutation, was more sensitive in some targets. These data demonstrate the significant antitumorigenic effect of shikonin derivatives in MFS and highlight the importance of intra-tumor heterogeneity in treatment planning.


Assuntos
Fibrossarcoma , Naftoquinonas , Humanos , Adulto , Transdução de Sinais , Linhagem Celular Tumoral , Naftoquinonas/farmacologia , Apoptose
2.
BMC Musculoskelet Disord ; 24(1): 804, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821859

RESUMO

BACKGROUND: Implant breakage after shoulder arthroplasty is a rare complication after aseptic loosening, infection or persistent pain, resulting in malfunction of the components requiring revision surgery. This correlates with a high burden for the patient and increasing costs. Specific data of complication rates and implant breakage are available in detailed arthroplasty registries, but due to the rare occurrence and possibly underestimated value rarely described in published studies. The aim of this systematic review was to point out the frequency of implant breakage after shoulder arthroplasty. We hypothesized that worldwide arthroplasty registry datasets record higher rates of implant breakage than clinical trials. METHODS: PubMed, MEDLINE, EMBASE, CINHAL, and the Cochrane Central Register of Controlled Trials database were utilized for this systematic review using the items "(implant fracture/complication/breakage) OR (glenoid/baseplate complication/breakage) AND (shoulder arthroplasty)" according to the PRISMA guidelines on July 3rd, 2023. Study selection, quality assessment, and data extraction were conducted according to the Cochrane standards. Case reports and experimental studies were excluded to reduce bias. The breakage rate per 100,000 observed component years was used to compare data from national arthroplasty registries and clinical trials, published in peer-reviewed journals. Relevant types of shoulder prosthetics were analyzed and differences in implant breakage were considered. RESULTS: Data of 5 registries and 15 studies were included. Rates of implant breakage after shoulder arthroplasty were reported with 0.06-0.86% in registries versus 0.01-6.65% in clinical studies. The breakage rate per 100,000 observed component years was 10 in clinical studies and 9 in registries. There was a revision rate of 0.09% for registry data and 0.1% for clinical studies within a 10-year period. The most frequently affected component in connection with implant fracture was the glenoid insert. CONCLUSION: Clinical studies revealed a similar incidence of implant failure compared to data of worldwide arthroplasty registries. These complications arise mainly due to breakage of screws and glenospheres and there seems to be a direct correlation to loosening. Periprosthetic joint infection might be associated with loosening of the prosthesis and subsequent material breakage. We believe that this analysis can help physicians to advise patients on potential risks after shoulder arthroplasty. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Prótese de Ombro , Humanos , Artroplastia do Ombro/efeitos adversos , Artroplastia do Ombro/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Prótese de Ombro/efeitos adversos , Implantação de Prótese/efeitos adversos , Reoperação/efeitos adversos , Sistema de Registros , Articulação do Ombro/cirurgia , Falha de Prótese , Resultado do Tratamento
3.
Cells ; 12(18)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759523

RESUMO

Particle therapy (PT) that utilizes protons and carbon ions offers a promising way to reduce the side effects of radiation oncology, especially in pediatric patients. To investigate the influence of PT on growing bone, we exposed an organotypic rat ex vivo femur culture model to PT. After irradiation, histological staining, immunohistochemical staining, and gene expression analysis were conducted following 1 or 14 days of in vitro culture (DIV). Our data indicated a significant loss of proliferating chondrocytes at 1 DIV, which was followed by regeneration attempts through chondrocytic cluster formation at 14 DIV. Accelerated levels of mineralization were observed, which correlated with increased proteoglycan production and secretion into the pericellular matrix. Col2α1 expression, which increased during the cultivation period, was significantly inhibited by PT. Additionally, the decrease in ColX expression over time was more pronounced compared to the non-IR control. The chondrogenic markers BMP2, RUNX2, OPG, and the osteogenic marker ALPL, showed a significant reduction in the increase in expression after 14 DIV due to PT treatment. It was noted that carbon ions had a stronger influence than protons. Our bone model demonstrated the occurrence of pathological and regenerative processes induced by PT, thus building on the current understanding of the biological mechanisms of bone.


Assuntos
Osteogênese , Prótons , Animais , Ratos , Humanos , Criança , Sistemas Microfisiológicos , Fêmur , Carbono
4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768638

RESUMO

To overcome the resistance to radiotherapy in chondrosarcomas, the prevention of efficient DNA repair with an additional treatment was explored for particle beams as well as reference X-ray irradiation. The combined treatment with DNA repair inhibitors-with a focus on ATRi VE-821-and proton or carbon ions irradiation was investigated regarding cell viability, proliferation, cell cycle distribution, MAPK phosphorylation, and the expression of key DNA repair genes in two human chondrosarcoma cell lines. Pre-treatment with the PARPis Olaparib or Veliparib, the ATMi Ku-55933, and the ATRi VE-821 resulted in a dose-dependent reduction in viability, whereas VE-821 has the most efficient response. Quantification of γH2AX phosphorylation and protein expression of the DNA repair pathways showed a reduced regenerative capacity after irradiation. Furthermore, combined treatment with VE-821 and particle irradiation increased MAPK phosphorylation and the expression of apoptosis markers. At the gene expression and at the protein expression/phosphorylation level, we were able to demonstrate the preservation of DNA damage after combined treatment. The present data showed that the combined treatment with ATMi VE-821 increases the radiosensitivity of human chondrosarcoma cells in vitro and significantly suppresses efficient DNA repair mechanisms, thus improving the efficiency of radiotherapy.


Assuntos
Reparo do DNA , Tolerância a Radiação , Humanos , Tolerância a Radiação/genética , Pirazinas/farmacologia , Sulfonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Dano ao DNA , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia
5.
Knee Surg Sports Traumatol Arthrosc ; 31(4): 1405-1411, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36087129

RESUMO

PURPOSE: The aim of this study was to determine the change in the long leg axis according to the preoperative knee phenotype using the mechanically aligned extension-first technique in total knee arthroplasty. The hypothesis of this study was that the knee phenotype would have an impact on the postoperative leg axis. METHODS: This was a retrospective comparative study comprising 224 whole-leg radiographs of 112 patients. The leg axes of the pre- and postoperative radiographs were measured and categorized into three preoperative limb phenotypes (based on the hip-knee-ankle angle [HKA]) according to Hirschmann et al. (varus-HKA < 178.5°, neutral-HKA 178.5°-181.5°, and valgus-HKA > 181.5°). Additionally, femoral phenotypes (based on the femoral mechanical angle [FMA], i.e., the mechanical medial distal femoral angle [mMDFA], as well as the tibial phenotypes [based on the tibial mechanical angle, i.e., the medial proximal tibial angle (MPTA)] was calculated. The change in the long leg axis was analyzed and compared with the preoperative limb phenotype. RESULTS: Significantly more patients with preoperative varus alignment shifted to neutral alignment (46.3%, n = 31) than did patients with preoperative valgus alignment (38.9%; n = 14). Moreover, 43.3% of patients (n = 29) with the varus phenotype remained in a varus alignment, compared with the 58.3% of patients with preoperative valgus phenotype (n = 21) remaining in valgus alignment. These findings were similar for both females (p < 0.001) and males (p = 0.015). CONCLUSION: Using an extension-first mechanically aligned surgical technique, varus phenotypes predominantly result in neutral leg axes or remain varus, neutral phenotypes remain neutral, and valgus phenotypes remain valgus or change to neutral phenotypes. This study showed that preoperative knee phenotypes in valgus knees influence this technique more strongly than estimated in previous investigations, which is in line with modern alignment philosophies for TKA. LEVEL OF EVIDENCE: Level IV, retrospective comparative study.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Masculino , Feminino , Artroplastia do Joelho/métodos , Estudos Retrospectivos , Osteoartrite do Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Tíbia/cirurgia , Fenótipo
6.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232764

RESUMO

Chondrosarcomas are particularly difficult to treat due to their resistance to chemotherapy and radiotherapy. However, particle therapy can enhance local control and patient survival rates. To improve our understanding of the basic cellular radiation response, as a function of dose and linear energy transfer (LET), we developed a novel water phantom-based setup for cell culture experiments and characterized it dosimetrically. In a direct comparison, human chondrosarcoma cell lines were analyzed with regard to their viability, cell proliferation, cell cycle, and DNA repair behavior after irradiation with X-ray, proton, and carbon ions. Our results clearly showed that cell viability and proliferation were inhibited according to the increasing ionization density, i.e., LET, of the irradiation modes. Furthermore, a prominent G2/M arrest was shown. Gene expression profiling proved the upregulation of the senescence genes CDKN1A (p21), CDKN2A (p16NK4a), BMI1, and FOXO4 after particle irradiation. Both proton or C-ion irradiation caused a positive regulation of the repair genes ATM, NBN, ATXR, and XPC, and a highly significant increase in XRCC1/2/3, ERCC1, XPC, and PCNA expression, with C-ions appearing to activate DNA repair mechanisms more effectively. The link between the physical data and the cellular responses is an important contribution to the improvement of the treatment system.


Assuntos
Condrossarcoma , Prótons , Carbono , Condrossarcoma/genética , Condrossarcoma/radioterapia , Humanos , Física , Antígeno Nuclear de Célula em Proliferação , Água , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
7.
BMC Cancer ; 22(1): 758, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820864

RESUMO

BACKGROUND: Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach. METHODS: The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR. RESULTS: Chondrosarcoma cells showed a dose-dependent inhibition of cell viability after treatment with shikonin and its derivatives, with the strongest effect for shikonin and IC50 values of 1.3 ± 0.2 µM. Flow cytometric measurements revealed a G2/M arrest of the cells after treatment. Protein and gene expression analysis demonstrated a dose-dependent downregulation of survivin and XIAP, and an upregulation of Noxa, γH2AX, cleaved caspase-8, -9, -3, and -PARP. Furthermore, the expression of various death receptors was modulated. As MAPK signaling pathways play a key role in tumor biology, their phosphorylation pattern and their corresponding downstream gene regulation were analyzed. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase of pAKT and the MAPKs pERK, pJNK, and pp38 in a dose-dependent manner. CONCLUSIONS: These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Proteínas Quinases Ativadas por Mitógeno , Naftoquinonas , Receptores de Morte Celular , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Humanos , Naftoquinonas/farmacologia , Receptores de Morte Celular/metabolismo
8.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628494

RESUMO

Melanoma is a complex and heterogenous disease, displays the deadliest form of skin cancer, and accounts for approx. 80% of all skin cancer deaths. In this study, we reported on the synthesis and pharmacological effects of a novel shikonin derivative (SK119), which is active in a nano-molar range and exhibits several promising in vitro effects in different human melanoma cells. SK119 was synthesized from shikonin as part of our search for novel, promising shikonin derivatives. It was screened against a panel of melanoma and non-tumorigenic cell lines using XTT viability assays. Moreover, we studied its pharmacological effects using apoptosis and Western blot experiments. Finally, it was combined with current clinically used melanoma therapeutics. SK119 exhibited IC50 values in a nano-molar range, induced apoptosis and led to a dose-dependent increase in the expression and protein phosphorylation of HSP27 and HSP90 in WM9 and MUG-Mel 2 cells. Combinatorial treatment, which is highly recommended in melanoma, revealed the synergistic effects of SK119 with vemurafenib and cobimetinib. SK119 treatment changed the expression levels of apoptosis genes and death receptor expression and exhibited synergistic effects with vemurafenib and cobimetinib in human melanoma cells. Further research indicates a promising potential in melanoma therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Apoptose , Azetidinas , Linhagem Celular , Humanos , Melanoma/metabolismo , Naftoquinonas , Piperidinas , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
9.
Cartilage ; 13(1): 19476035211069251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094602

RESUMO

OBJECTIVE: Despite massive efforts, there are no diagnostic blood biomarkers for knee osteoarthritis (KOA). This study investigated several candidate diagnostic biomarkers and the metabolic phenotype in end-stage KOA in the context of obesity. DESIGN: In this cross-sectional study, adult patients undergoing knee arthroplasty were enrolled and KOA severity was assessed using the Lequesne index. Blood biomarkers with an important role in obesity, the metabolic syndrome, or KOA (oxidized form of low-density lipoprotein [oxLDL], advanced glycation end product [AGE], soluble AGE receptor [sRAGE], fatty acid binding protein 4 [FABP4], phospholipase A2 group IIA [PLA2G2A], fibroblast growth factor 23 [FGF-23], ghrelin, leptin, and resistin) were measured using enzyme-linked immunosorbent assay (ELISA; n = 70) or Luminex technique (subgroup of n = 35). H1-NMR spectroscopy was used for the quantification of metabolite levels (subgroup of n = 31). The hip-knee-ankle angle was assessed. Multivariable and multivariate regression analysis was used to examine the relationship of biomarkers with body mass index (BMI) and KOA severity in complete case and multiple imputation analysis. RESULTS: While most of the investigated biomarkers were not associated with KOA severity, FABP4 and leptin were found to correlate with BMI and gender. Resistin was associated with Lequesne index in complete case analysis. Using a targeted metabolomics approach, BMI-dependent changes in the metabolome were hardly visible. CONCLUSIONS: Our findings confirm studies on FABP4, leptin, and resistin with regard to obesity and the metabolic syndrome. There was no association of the investigated biomarkers with KOA severity, most likely due to the patient selection (end-stage KOA patients). Based on this absence of BMI-dependent changes in the metabolome, we might assume that BMI is not correlated with KOA severity in this specific patient group.


Assuntos
Síndrome Metabólica , Osteoartrite do Joelho , Biomarcadores , Índice de Massa Corporal , Estudos Transversais , Humanos , Leptina , Síndrome Metabólica/complicações , Obesidade/complicações , Osteoartrite do Joelho/complicações , Resistina
10.
Z Med Phys ; 32(3): 326-333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35058110

RESUMO

BACKGROUND AND PURPOSE: Magnetic field effects on the radiobiological effectiveness during treatment of magnetic resonance (MRI) guided particle therapy are being debated. This study aims at assessing the influence of a perpendicular magnetic field on the biological effects in two human cancer cell lines irradiated with proton or carbon ions. METHODS AND MATERIALS: In vitro cell irradiations were performed in water inside a perpendicular magnetic field of 0 and 1T for both protons and carbon ions. Samples were located in the center of a spread-out Bragg peak at 8cm water equivalent depth with a dose averaged linear energy transfer (LETd) of 4.2 or 83.4keV/µm for protons and carbon ions, respectively. Physical dose levels of 0, 0.5, 1, 2, 4 and 6Gy were employed. The irradiation field was shifted and laterally enlarged, to compensate for the beam deflection due to the magnetic field and ensure consistent and homogenous irradiations of the flasks. The human cancer cell lines SKMel (Melanoma) and SW1353 (chondrosarcoma) were selected which represent a high and a low (α/ß)x ratio cell type. Cell survival curves were generated applying a linear-quadratic curve fit. DNA damage and DNA damage clearance were assessed via γH2AX foci quantification at 1 and 24h post radiation treatment. RESULTS: Without a magnetic field, RBE10 values of 1.04±0.03 (SW1353) and 1.51±0.06 (SKMel) as well as RBE80 values of 0.93±0.15 (SW1353) and 2.28±0.40 (SKMel) were calculated for protons. Carbon treatments yielded RBE10 values of 1.68±0.04 (SW1353) and 2.30±0.07 (SKMel) and RBE80 values of 2.19±0.24 (SW1353) and 4.06±0.33 (SKMel). For a field strength of B=1T, RBE10 values of 1.06±0.03 (SW1353) and 1.47±0.06 (SKMel) resulted from protons, while RBE10 values of 1.70±0.05 (SW1353) and 2.37±0.08 (SKMel) were obtained for carbon ions. RBE80 values were calculated to be 1.06±0.12 (SW1353) and 2.33±0.40 (SKMel) following protons and 2.13±0.25 (SW1353) and 4.29±0.35 (SKMel) following carbon treatments. Substantially increased γH2AX foci per nucleus were found in both cell lines 1h after radiation with both ion species. At the 24h time point only carbon treated samples of both cell lines showed increased γH2AX levels. The presence of the magnetic field did neither influence the survival parameters of either cell line, nor initial DNA damage and DNA damage clearance. CONCLUSIONS: Applying a perpendicular magnetic field did not influence the cell survival, DNA repair, nor the biological effectiveness of protons or carbon ions in two human cancer cell lines.


Assuntos
Neoplasias , Terapia com Prótons , Carbono/uso terapêutico , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Humanos , Íons , Campos Magnéticos , Método de Monte Carlo , Prótons , Água
11.
Sci Rep ; 11(1): 24116, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916568

RESUMO

Although particle therapy with protons has proven to be beneficial in the treatment of chondrosarcoma compared to photon-based (X-ray) radiation therapy, the cellular and molecular mechanisms have not yet been sufficiently investigated. Cell viability and colony forming ability were analyzed after X-ray and proton irradiation (IR). Cell cycle was analyzed using flow cytometry and corresponding regulator genes and key players of the DNA repair mechanisms were measured using next generation sequencing, protein expression and immunofluorescence staining. Changes in metabolic phenotypes were determined with nuclear magnetic resonance spectroscopy. Both X-ray and proton IR resulted in reduced cell survival and a G2/M phase arrest of the cell cycle. Especially 1 h after IR, a significant dose-dependent increase of phosphorylated γH2AX foci was observed. This was accompanied with a reprogramming in cellular metabolism. Interestingly, within 24 h the majority of clearly visible DNA damages were repaired and the metabolic phenotype restored. Involved DNA repair mechanisms are, besides the homology directed repair (HDR) and the non-homologous end-joining (NHEJ), especially the mismatch mediated repair (MMR) pathway with the key players EXO1, MSH3, and PCNA. Chondrosarcoma cells regenerates the majority of DNA damages within 24 h. These molecular mechanisms represent an important basis for an improved therapy.


Assuntos
Ciclo Celular/efeitos da radiação , Condrossarcoma/genética , Condrossarcoma/radioterapia , Reparo do DNA/efeitos da radiação , Fótons/uso terapêutico , Terapia com Prótons , Sobrevivência Celular/efeitos da radiação , Condrossarcoma/patologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Dosagem Radioterapêutica , Fatores de Tempo , Células Tumorais Cultivadas
12.
Cell Oncol (Dordr) ; 44(6): 1231-1242, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34550531

RESUMO

PURPOSE: Drug screening programmes have revealed epidermal growth factor receptor inhibitors (EGFRis) as promising therapeutics for chordoma, an orphan malignant bone tumour, in the absence of a known genetic driver. Concurrently, the irreversible EGFRi afatinib (Giotrif®) is being evaluated in a multicentric Phase II trial. As tyrosine kinase inhibitor (TKI) monotherapies are invariably followed by resistance, we aimed to evaluate potential therapeutic combinations with EGFRis. METHODS: We screened 133 clinically approved anticancer drugs as single agents and in combination with two EGFRis (afatinib and erlotinib) in the clival chordoma cell line UM-Chor1. Synergistic combinations were analysed in a 7 × 7 matrix format. The most promising combination was further explored in clival (UM-Chor1, MUG-CC1) and sacral (MUG-Chor1, U-CH1) chordoma cell lines. Secretomes were analysed for receptor tyrosine kinase ligands (EGF, TGF-α, FGF-2 and VEGF-A) upon drug treatment. RESULTS: Drugs that were active as single agents (n = 45) included TKIs, HDAC and proteasome inhibitors, and cytostatic drugs. Six combinations were analysed in a matrix format: n = 4 resulted in a significantly increased cell killing (crizotinib, dabrafenib, panobinostat and doxorubicin), and n = 2 exhibited no or negligible effects (regorafenib, venetoclax). Clival chordoma cell lines were more responsive to combined EGFR-MET inhibition. EGFR-MET cross-talk (e.g. via TGF-α secretion) likely accounts for the synergistic effects of EGFR-MET inhibition. CONCLUSION: Our screen revealed promising combinations with EGFRis, such as the ALK/MET-inhibitor crizotinib, the HDAC-inhibitor panobinostat or the topoisomerase-II-inhibitor doxorubicin, which are part of standard chemotherapy regimens for various bone and soft-tissue sarcomas.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cordoma/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Pesquisa Translacional Biomédica , Afatinib/farmacologia , Afatinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Comunicação Autócrina , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Aprovação de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Estados Unidos , United States Food and Drug Administration , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Sci Rep ; 11(1): 12466, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127734

RESUMO

Chordomas are rare slow growing, malignant bone tumors of the axial skeleton with no approved medical treatment. As the majority of chordomas express cMET and its ligand, HGF, and crosstalks between EGFR and MET-signaling exist, we aimed to explore cMET activity in chordoma cell lines and clinical samples. We investigated nine chordoma patients and four chordoma cell lines for cMET expression. Two clival and two sacral chordoma cell lines were tested for chromosomal abnormalities of the MET gene locus; we studied the influence of HGF on the autocrine secretion and migration behavior, as well as protein expression and phosphorylation. Two MET/ALK inhibitors were investigated for their effects on cell viability, cell cycle, cyclin alterations, apoptosis, and downstream signaling pathways. Moderate and strong expression of membrane and cytoplasmic cMET in chordoma patients and cell lines used, as well as concentration-dependent increase in phospho cMET expression after HGF stimulation in all four chordoma cell lines was shown. U-CH2, MUG-Chor1, and UM-Chor1 are polysomic for MET. Chordoma cell lines secreted EGF, VEGF, IL-6, and MMP9 upon HGF-stimulation. Sacral cell lines showed a distinct HGF-induced migration. Both inhibitors dose-dependently inhibited cell growth, induce apoptosis and cell-cycle arrest, and suppress downstream pathways. Heterogeneous responses obtained in our in vitro setting indicate that cMET inhibitors alone or in combination with other drugs might particularly benefit patients with sacral chordomas.


Assuntos
Cordoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Sacro/patologia , Neoplasias da Base do Crânio/tratamento farmacológico , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cordoma/genética , Cordoma/patologia , Fossa Craniana Posterior , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Base do Crânio/patologia
14.
Oncol Lett ; 21(6): 428, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868466

RESUMO

Chondrosarcomas represent a heterogeneous group of primary bone cancers that are characterized by hyaline cartilaginous neoplastic tissue and are predominantly resistant to radiation and chemotherapy. However, adjuvant radiotherapy is often recommended in inoperable cases or after incomplete resections. To improve the efficiency of treatment, the present study tested a combination therapy with ionizing radiation (IR) and the proteasome inhibitor bortezomib. Using a three-dimensional (3D) spheroid model, 0-20 Gy of IR was applied to chondrosarcoma cells and healthy human chondrocytes. Following combined treatment with IR and bortezomib, the cell cycle distribution, apoptotic induction, the survivin pathway, autophagy and DNA damage were evaluated. Both cell types exhibited a slight decrease in viability following increasing doses of IR; the chondrosarcoma cells demonstrated a significant dose-dependent increase in the expression levels of the DNA damage marker histone H2AX phosphorylation at serine 139 (γH2AX). The combination treatment with bortezomib significantly decreased the cell viability after 48 h compared with that in irradiated cells. High-dose IR induced a G2/M phase arrest, which was accompanied by a decrease in the number of cells at the G1 and S phase. Co-treatment with bortezomib changed the distribution of the cell cycle phases. The mRNA expression levels of the proapoptotic genes Bcl-2-associated X protein (Bax) and Bak were significantly increased by bortezomib treatment and combination therapy with IR. In addition, the combination therapy resulted in a synergistic decrease of the expression levels of survivin and its corresponding downstream pathway molecules, including heat shock protein 90, X-linked inhibitor of apoptosis protein, smad 2 and smad 3. Comparative analyses of γH2AX at 1 and 24 h post-IR revealed efficient DNA repair in human chondrosarcoma cells. Therefore, additional bortezomib treatment may only temporarily improve the radiation sensitivity of chondrosarcoma cells. However, the inhibition of the survivin pathway by the combined treatment with IR and bortezomib, observed in the present study, revealed a novel aspect in the tumor biology of chondrosarcoma 3D spheroid cultures and may represent a potential target for therapy.

15.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803437

RESUMO

Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Ciclopropanos , Melanoma/tratamento farmacológico , Naftoquinonas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclopropanos/síntese química , Ciclopropanos/química , Ciclopropanos/farmacologia , Humanos , Melanoma/metabolismo , Naftoquinonas/síntese química , Naftoquinonas/química , Naftoquinonas/farmacologia
16.
Materials (Basel) ; 13(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635603

RESUMO

Due to its versatility, small size, large surface area, and ability to interact with biological cells and tissues, graphene oxide (GO) is an excellent filler for various polymeric composites and is frequently used to expand their functionality. Even though the major advantage of the incorporation of GO is the enhancement of mechanical properties of the composite material, GO is also known to improve bioactivity during biomineralization and promote osteoblast adhesion. In this study, we described the fabrication of a composite bone cement made of GO and poly(methyl methacrylate) (PMMA), and we investigated its potential to enhance osteogenic differentiation of human primary mesenchymal stem and progenitor cells. Through the analysis of three differentiation markers, namely alkaline phosphatase, secreted protein acidic and rich in cysteine, and bone morphogenetic protein-2 in the presence and in the absence of an osteogenic differentiation medium, we were able to indicate a composite produced manually with a thick GO paper as the most effective among all investigated samples. This effect was related to its developed surface, possessing a significant number of voids and pores. In this way, GO/PMMA composites were shown as promising materials for the applications in bone tissue engineering.

17.
Phytomedicine ; 76: 153262, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32559583

RESUMO

BACKGROUND: Periploca sepium is traditionally used in Chinese medicine to treat particularly rheumatic disorders and as a tonic. Periplocin was found as the most cytotoxic compound of its root bark and induced death receptor mediated apoptosis in liposarcoma cells. Sarcomas are a rare type of cancer with only a few treatment options. The five-year survival rate of advanced tumors is low. PURPOSE: In this study, we investigated the effects of periplocin in two myxofibrosarcoma (MFS)cell lines, MUG-Myx2a and MUG-Myx2b, which are subclones of the same tumor and reflect the tumor´s heterogeneity, and in T60 primary myxofibrosarcoma cells. METHODS: The xCELLigence system and the CellTiter 96® AQueous assay were used for studying cell viability. FACS and Western blot experiments were used to investigate the effects of periplocin on apoptosis induction, cell cycle distribution, and the expression of cleaved PARP, caspase 3, p53, phospho-histone γH2AX, ERK/phospho ERK, p38/phospho p38, and, finally, JNK/phospho JNK. Additionally, the expression of the apoptotic markers Bim, NOXA, Bak, Bcl-2, Bcl-xl, and the death receptors IGFR, FADD, TRADD, TNFR1A, TRAIL-R1, and TRAIL-R2 were evaluated using reversed real-time PCR. RESULTS: Periplocin decreased dose-dependently the viability of all MFS cell lines and was more effective than the standard chemotherapeutic doxorubicin. It arrested the cells in the G2/M phase and led to caspase activation. Moreover, periplocin increased the mRNA expression of NOXA, Bak, Bcl-2, and death receptors such as TRAIL-R1 and TRAIL-R2 and the protein expression of ERK/phospho ERK, p38/phospho p38, and JNK/phospho JNK. In all cases, differences in the effects in the different subclones were observed. CONCLUSION: Periplocin showed promising effects in MFS cells. The higher effectiveness compared to doxorubicin is an important aspect for further research with regard as a treatment option. The different effects of periplocin in the two subclones showed the great importance of intratumoral heterogeneity in MFS therapy.

18.
Sci Rep ; 9(1): 4096, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858407

RESUMO

Melanoma is a leading cause of high mortality that frequently spreads to the brain and is associated with deterioration in quality and quantity of life. Treatment opportunities have been restricted until now and new therapy options are urgently required. Our focus was to reveal the potential heterogeneity of melanoma brain metastasis. We succeeded to establish a brain melanoma metastasis cell line, namely MUG-Mel1 and two resulting clones D5 and C8 by morphological variety, differences in lipidome, growth behavior, surface, and stem cell markers. Mutation analysis by next-generation sequencing, copy number profiling, and cytogenetics demonstrated the different genetic profile of MUG-Mel1 and clones. Tumorigenicity was unsuccessfully tested in various mouse systems and finally established in a zebra fish model. As innovative treatment option, with high potential to pass the blood-brain barrier a peptide isolated from lactoferricin was studied in potential toxicity. Brain metastases are a major clinical challenge, therefore the development of relevant in vitro and in vivo models derived from brain melanoma metastases provides valuable information about tumor biology and offers great potential to screen for new innovative therapies.


Assuntos
Neoplasias Encefálicas/secundário , Células Clonais/patologia , Melanoma/patologia , Animais , Neoplasias Encefálicas/ultraestrutura , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Dosagem de Genes , Humanos , Concentração Inibidora 50 , Lipídeos/análise , Masculino , Melanoma/ultraestrutura , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Peptídeos/farmacologia , Peixe-Zebra
19.
Cell Signal ; 56: 23-30, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30583016

RESUMO

BACKGROUND: Progression of osteoarthritis (OA) is characterized by an excessive production of matrix degrading enzymes and insufficient matrix repair. Despite of active research in this area, it is still unclear how the combination of mechanical exposure and drug therapy works. This study was done to explore the impact of the disease modifying OA drug (DMOAD) diacerein and moderate tensile strain on the anabolic metabolism and the integrin-FAK-MAPKs signal transduction cascade of OA and non-OA chondrocytes. METHODS: Cyclic tensile strain was applied in terms of three different intensities by the Flexcell tension system. Influence on catabolic parameters such as MMPs, ADAMTS, and IL-6 were assessed by qPCR. Changes in phosphorylation of FAK, STAT3 as well as MAP kinases were verified by western blot analysis. Intracellular calcium was measured fluorimetrically using fura-2. RESULTS: Tensile strain at moderate intensity (SM/SA profile) proved to be most efficient in terms of reducing production of matrix degrading enzyme and IL-6 expression. Treatment with diacerein by itself and diacerein in combination with SM/SA stimulation reduced phosphorylation of FAK and STAT3, which is more pronounced in OA cells. Pretreatment with diacerein for 7 days resulted in an increase in the sensitivity to Yoda1, the agonist for the mechanically activated ion channel Piezo1. However, in OA chondrocytes a significant reduction in Piezo1 expression was observed following treatment with diacerein. CONCLUSION: Our results demonstrated for the first time that diacerein intensively intervenes in the regulation of FAK and STAT3 and influences components considered relevant for the progression of OA, even in the presence of mechanical stimulation.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Mecanotransdução Celular/fisiologia , Osteoartrite/patologia , Fator de Transcrição STAT3/metabolismo , Proteínas ADAMTS/metabolismo , Linhagem Celular , Condrócitos/patologia , Endopeptidases/metabolismo , Humanos , Interleucina-6/metabolismo , Canais Iônicos/biossíntese , Metaloproteinases da Matriz/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Estresse Fisiológico/fisiologia , Tioléster Hidrolases/metabolismo
20.
Molecules ; 23(11)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380765

RESUMO

Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. ß,ß-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.


Assuntos
Boraginaceae/química , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Naftoquinonas/síntese química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Histonas/genética , Humanos , Melanoma/patologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fosforilação/efeitos dos fármacos , Raízes de Plantas/química , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA