Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 41(8): 1733-1750, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751667

RESUMO

KEY MESSAGE: Fumonisin B1 induces rapid programmed cell death in Arabidopsis cells, oxidative and nitrosative bursts, and differentially modulates cell death responsive genes. Glutathione is the main antioxidant involved in the stress response. Fumonisin B1 (FB1) is a fungal toxin produced by Fusarium spp. able to exert pleiotropic toxicity in plants. FB1 is known to be a strong inducer of the programmed cell death (PCD); however, the exact mechanism underling the plant-toxin interactions and the molecular events that lead to PCD are still unclear. Therefore, in this work, we provided a comprehensive investigation of the response of the model organism Arabidopsis thaliana at the nuclear, transcriptional, and biochemical level after the treatment with FB1 at two different concentrations, namely 1 and 5 µM during a time-course of 96 h. FB1 induced oxidative and nitrosative bursts and a rapid cell death in Arabidopsis cell cultures, which resembled a HR-like PCD event. Different genes involved in the regulation of PCD, antioxidant metabolism, photosynthesis, pathogenesis, and sugar transport were upregulated, especially during the late treatment time and with higher FB1 concentration. Among the antioxidant enzymes and compounds studied, only glutathione appeared to be highly induced in both treatments, suggesting that it might be an important stress molecule induced during FB1 exposure. Collectively, these findings highlight the complexity of the signaling network of A. thaliana and provide information for the understanding of the physiological, molecular, and biochemical responses to counteract FB1-induced toxicity.


Assuntos
Arabidopsis , Fumonisinas , Micotoxinas , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Técnicas de Cultura de Células , Morte Celular , Fumonisinas/metabolismo , Fumonisinas/toxicidade , Glutationa/metabolismo , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Estresse Oxidativo
2.
Front Microbiol ; 13: 1085891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762096

RESUMO

Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.

3.
Antioxidants (Basel) ; 10(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204398

RESUMO

Antioxidants are an heterogeneous group of compounds able to counteract cell oxidation by acting as reducing agents, as free radical scavengers, and quenchers of radical species and other pro-oxidants, such as metals [...].

4.
Front Microbiol ; 11: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226415

RESUMO

Aflatoxins (AFs) are secondary metabolites produced by Aspergillus spp., known for their hepatotoxic, carcinogenic, and mutagenic activity in humans and animals. AF contamination of staple food commodities is a global concern due to their toxicity and the economic losses they cause. Different strategies have been applied to reduce fungal contamination and AF production. Among them, the use of natural, plant-derived compounds is emerging as a promising strategy to be applied to control both Aspergillus spoilage and AF contamination in food and feed commodities in an integrated pre- and postharvest management. In particular, phenols, aldehydes, and terpenes extracted from medicinal plants, spices, or fruits have been studied in depth. They can be easily extracted, they are generally recognized as safe (GRAS), and they are food-grade and act through a wide variety of mechanisms. This review investigated the main compounds with antifungal and anti-aflatoxigenic activity, also elucidating their physiological role and the different modes of action and synergies. Plant bioactive compounds are shown to be effective in modulating Aspergillus spp. contamination and AF production both in vitro and in vivo. Therefore, their application in pre- and postharvest management could represent an important tool to control aflatoxigenic fungi and to reduce AF contamination.

5.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396461

RESUMO

Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.

6.
Phytochemistry ; 90: 16-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23523329

RESUMO

Ferula communis (L.), a plant belonging to Apiaceae, is widely present in Sardinia, Italy. Currently, interest in F. communis focuses on the presence of two chemotypes in the wild. One chemotype is poisonous to animals, whereas the other chemotype is non-poisonous. Polyphenol oxidase (PPO) has been extracted and partially purified from the two chemotypes of F. communis. The biochemical characterization of the enzymes showed significant differences. In particular, while the two PPOs were not able to use 6- and 7-hydroxycoumarin as substrates, they showed distinct specificity for 6,7- and 7,8-dihydroxycoumarin. Significant differences in the enzyme behavior towards common PPO inhibitors were also observed. In addition, activation energy and activation energy for denaturation were determined, showing significant differences between FP-PPO and FNP-PPO, particularly for denaturation kinetics. The possible roles of the two PPOs in determining differences in composition and toxicity of the two F. communis chemotypes are also discussed.


Assuntos
Catecol Oxidase/isolamento & purificação , Catecol Oxidase/metabolismo , Ferula/enzimologia , Catecol Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Itália , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA