Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Rep ; 12(1): 18091, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302951

RESUMO

Heat shock protein 90 (Hsp90) maintains cellular proteostasis during stress and has been under investigation as a therapeutic target in cancer for over two decades. We and others have identified a membrane expressed form of Hsp90 (mHsp90) that previously appeared to be restricted to rapidly proliferating cells exhibiting a metastatic phenotype. Here, we used HS-131, a fluor-tethered mHsp90 inhibitor, to quantify the effect of T cell activation on the expression of mHsp90 in human and mouse T cells. In cell-based assays, stimulation of human T cells induced a 20-fold increase in mHsp90 expression at the plasma membrane, suggesting trafficking of mHsp90 is regulated by TCR and inflammatory mediated signaling. Following injection of HS-131 in mouse models of human rheumatoid arthritis and inflammatory bowel disease, we detected localization of the probe at sites of active disease, consistent with immune cell invasion. Moreover, despite rapid hepatobiliary clearance, HS-131 demonstrated efficacy in reducing the mean clinical score in the CIA arthritis model. Our results suggest mHsp90 expression on T cells is a molecular marker of T cell activation and potentially a therapeutic target for chronic diseases such as rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Ativação Linfocitária , Camundongos , Animais , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Linfócitos T , Artrite Reumatoide/tratamento farmacológico , Modelos Animais de Doenças
2.
J Biol Chem ; 297(5): 101272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606827

RESUMO

Mammalian cells acquire fatty acids (FAs) from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers of the breast, prostate, and liver, among others, and is required during the replication of many viruses, such as dengue virus, hepatitis C, HIV-1, hepatitis B, and severe acute respiratory syndrome coronavirus 2, among others. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo FA synthesis contributes to host or viral protein acylation has been traditionally difficult to study. Here, we describe a cell-permeable and click chemistry-compatible alkynyl acetate analog (alkynyl acetic acid or 5-hexynoic acid [Alk-4]) that functions as a reporter of FASN-dependent protein acylation. In an FASN-dependent manner, Alk-4 selectively labels the cellular protein interferon-induced transmembrane protein 3 at its known palmitoylation sites, a process that is essential for the antiviral activity of the protein, and the HIV-1 matrix protein at its known myristoylation site, a process that is required for membrane targeting and particle assembly. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Acilação , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , SARS-CoV-2/metabolismo
3.
Nat Struct Mol Biol ; 28(8): 662-670, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381247

RESUMO

Aerobic glycolysis in cancer cells, also known as the 'Warburg effect', is driven by hyperactivity of lactate dehydrogenase A (LDHA). LDHA is thought to be a substrate-regulated enzyme, but it is unclear whether a dedicated intracellular protein also regulates its activity. Here, we identify the human tumor suppressor folliculin (FLCN) as a binding partner and uncompetitive inhibitor of LDHA. A flexible loop within the amino terminus of FLCN controls movement of the LDHA active-site loop, tightly regulating its enzyme activity and, consequently, metabolic homeostasis in normal cells. Cancer cells that experience the Warburg effect show FLCN dissociation from LDHA. Treatment of these cells with a decapeptide derived from the FLCN loop region causes cell death. Our data suggest that the glycolytic shift of cancer cells is the result of FLCN inactivation or dissociation from LDHA. Together, FLCN-mediated inhibition of LDHA provides a new paradigm for the regulation of glycolysis.


Assuntos
Glicólise/fisiologia , Lactato Desidrogenase 5/antagonistas & inibidores , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Domínio Catalítico/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Lactato Desidrogenase 5/metabolismo , Transdução de Sinais
4.
Sci Transl Med ; 12(574)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328331

RESUMO

Heat shock factor 1 (HSF1) is a cellular stress-protective transcription factor exploited by a wide range of cancers to drive proliferation, survival, invasion, and metastasis. Nuclear HSF1 abundance is a prognostic indicator for cancer severity, therapy resistance, and shortened patient survival. The HSF1 gene was amplified, and nuclear HSF1 abundance was markedly increased in prostate cancers and particularly in neuroendocrine prostate cancer (NEPC), for which there are no available treatment options. Despite genetic validation of HSF1 as a therapeutic target in a range of cancers, a direct and selective small-molecule HSF1 inhibitor has not been validated or developed for use in the clinic. We described the identification of a direct HSF1 inhibitor, Direct Targeted HSF1 InhiBitor (DTHIB), which physically engages HSF1 and selectively stimulates degradation of nuclear HSF1. DTHIB robustly inhibited the HSF1 cancer gene signature and prostate cancer cell proliferation. In addition, it potently attenuated tumor progression in four therapy-resistant prostate cancer animal models, including an NEPC model, where it caused profound tumor regression. This study reports the identification and validation of a direct HSF1 inhibitor and provides a path for the development of a small-molecule HSF1-targeted therapy for prostate cancers and other therapy-resistant cancers.


Assuntos
Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Neoplasias da Próstata , Animais , Núcleo Celular/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
5.
Elife ; 92020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975513

RESUMO

Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Morte Celular/fisiologia , Aptidão Genética , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfatos de Fosfatidilinositol/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacúolos/metabolismo
6.
Sci Rep ; 8(1): 17058, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451876

RESUMO

Immune challenge of invading macrophages at sites of infection is associated with release of TNF, which triggers a local cytokine storm as part of the normal inflammatory response. Whereas this response maybe beneficial in fighting off infections, similar responses triggered in autoimmune diseases contribute significantly to the underlying damaging pathology associated with these diseases. Here we show that Takinib, a highly discriminatory inhibitor of transforming growth factor Beta- activated kinase 1 (TAK1), selectively and potently reduces TNF production in pro-inflammatory THP-1 macrophages. A complete survey of 110 cytokines, showed robust loss of proinflammatory cytokine responsiveness to lipopolysaccharide (LPS) and interferon gamma (IFNγ) challenge in response to Takinib. The mechanisms of action of Takinib was recapitulated in TAK1 KO macrophages. TAK1 KO cells showed significant loss of TNF production as well as release of IL-6 in response to LPS challenge. Furthermore, Takinib blocked the ability of exogenously added LPS to promote phosphorylation of, c-Jun, p38 protein kinases as well as downstream transcription factors regulated by nuclear factor κ-light-chain-enhancer of activated B cells (NFκB). In a mouse LPS challenge model, Takinib significantly reduced TNF serum levels. Our findings demonstrate that Takinib has utility in the treatment inflammatory disease by locally suppressing TNF production from invading macrophages.


Assuntos
MAP Quinase Quinase Quinases/genética , Macrófagos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Cell Rep ; 21(7): 1883-1895, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141220

RESUMO

The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an "on/off switch" mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.


Assuntos
Apoptose , Carcinoma de Células Renais/metabolismo , Glicoproteínas/metabolismo , Neoplasias Renais/metabolismo , Ubiquitinação , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Glicoproteínas/genética , Humanos , Neoplasias Renais/patologia , Fosforilação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
Retrovirology ; 14(1): 45, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962653

RESUMO

BACKGROUND: Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. RESULTS: Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. CONCLUSIONS: Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral/fisiologia , Antivirais/farmacologia , Linhagem Celular Tumoral , Cromatografia de Afinidade , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Regulação Enzimológica da Expressão Gênica , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Proteômica , Pirimidinas/farmacologia , Interferência de RNA , Processamento Pós-Transcricional do RNA , Sefarose/química , Tiofenos/farmacologia , Vírion/fisiologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
9.
Cell Chem Biol ; 24(8): 1029-1039.e7, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28820959

RESUMO

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Assuntos
Benzamidas/química , Benzimidazóis/química , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Fator de Necrose Tumoral alfa/metabolismo , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Benzamidas/metabolismo , Benzamidas/farmacologia , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Interleucina-6/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sinoviócitos/citologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
10.
ACS Chem Biol ; 12(4): 1047-1055, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28103010

RESUMO

Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by overexpressing p110HER2. Whole body cryoslicing, imaging, and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an "Achilles heel" for the early diagnosis of metastatic disease and targeted drug delivery.


Assuntos
Neoplasias da Mama/patologia , Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Endocitose , Espaço Extracelular/metabolismo , Genes erbB-2 , Xenoenxertos , Humanos , Camundongos
11.
Biochemistry ; 55(36): 5028-37, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27509380

RESUMO

The light-sensing outer segments of photoreceptor cells harbor hundreds of flattened membranous discs containing the visual pigment, rhodopsin, and all the proteins necessary for visual signal transduction. PRCD (progressive rod-cone degeneration) protein is one of a few proteins residing specifically in photoreceptor discs, and the only one with completely unknown function. The importance of PRCD is highlighted by its mutations that cause photoreceptor degeneration and blindness in canine and human patients. Here we report that PRCD is S-acylated at its N-terminal cysteine and anchored to the cytosolic surface of disc membranes. We also showed that mutating the S-acylated cysteine to tyrosine, a common cause of blindness in dogs and a mutation found in affected human families, causes PRCD to be completely mislocalized from the photoreceptor outer segment. We next undertook a proteomic search for PRCD-interacting partners in disc membranes and found that it binds rhodopsin. This interaction was confirmed by reciprocal precipitation and co-chromatography experiments. We further demonstrated this interaction to be critically important for supporting the intracellular stability of PRCD, as the knockout of rhodopsin caused a drastic reduction in the photoreceptor content of PRCD. These data reveal the cause of photoreceptor disease in PRCD mutant dogs and implicate rhodopsin to be involved in PRCD's unknown yet essential function in photoreceptors.


Assuntos
Proteínas do Olho/química , Proteínas de Membrana/química , Células Fotorreceptoras de Vertebrados/metabolismo , Rodopsina/metabolismo , Acilação , Animais , Cromatografia em Gel , Eletroporação , Proteínas do Olho/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
12.
Nat Commun ; 7: 12037, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353360

RESUMO

Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Chaperonas Moleculares/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
13.
Cell Chem Biol ; 23(6): 678-88, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27265747

RESUMO

Many tumors are dependent on de novo fatty acid synthesis to maintain cell growth. Fatty acid synthase (FASN) catalyzes the final synthetic step of this pathway, and its upregulation is correlated with tumor aggressiveness. The consequences and adaptive responses of acute or chronic inhibition of essential enzymes such as FASN are not fully understood. Herein we identify Fasnall, a thiophenopyrimidine selectively targeting FASN through its co-factor binding sites. Global lipidomics studies with Fasnall showed profound changes in cellular lipid profiles, sharply increasing ceramides, diacylglycerols, and unsaturated fatty acids as well as increasing exogenous palmitate uptake that is deviated more into neutral lipid formation rather than phospholipids. We also showed that the increase in ceramide levels contributes to some extent in the mediation of apoptosis. Consistent with this mechanism of action, Fasnall showed potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer, particularly when combined with carboplatin.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Injeções Intraperitoneais , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Pirimidinas/administração & dosagem , Pirimidinas/química , Receptor ErbB-2/metabolismo , Suínos , Tiofenos/administração & dosagem , Tiofenos/química
14.
Cell Rep ; 12(6): 1006-18, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235616

RESUMO

The ability of Heat Shock Protein 90 (Hsp90) to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific "client" proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1), promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Humanos , Imunoprecipitação , Modelos Biológicos , Chaperonas Moleculares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética
15.
J Biol Chem ; 290(29): 17985-17998, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26048986

RESUMO

Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1(-/-) mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ~4% of women.


Assuntos
Deleção de Genes , Glicólise , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Animais , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio , Fosfoproteínas/metabolismo , Gravidez , Proteômica , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo
16.
Chem Biol ; 21(12): 1648-59, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500222

RESUMO

Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Humanos , Camundongos , Modelos Moleculares , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacocinética , Permeabilidade , Piperidinas/metabolismo , Piperidinas/farmacocinética , Agregados Proteicos/efeitos dos fármacos , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Biol ; 203(5): 737-46, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24297750

RESUMO

RNA localization pathways direct numerous mRNAs to distinct subcellular regions and affect many physiological processes. In one such pathway the tumor-suppressor protein adenomatous polyposis coli (APC) targets RNAs to cell protrusions, forming APC-containing ribonucleoprotein complexes (APC-RNPs). Here, we show that APC-RNPs associate with the RNA-binding protein Fus/TLS (fused in sarcoma/translocated in liposarcoma). Fus is not required for APC-RNP localization but is required for efficient translation of associated transcripts. Labeling of newly synthesized proteins revealed that Fus promotes translation preferentially within protrusions. Mutations in Fus cause amyotrophic lateral sclerosis (ALS) and the mutant protein forms inclusions that appear to correspond to stress granules. We show that overexpression or mutation of Fus results in formation of granules, which preferentially recruit APC-RNPs. Remarkably, these granules are not translationally silent. Instead, APC-RNP transcripts are translated within cytoplasmic Fus granules. These results unexpectedly show that translation can occur within stress-like granules. Importantly, they identify a new local function for cytoplasmic Fus with implications for ALS pathology.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteína FUS de Ligação a RNA/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Camundongos , Células NIH 3T3 , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/fisiologia
18.
Chem Biol ; 20(9): 1187-97, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24035283

RESUMO

Inhibitors of heat-shock protein 90 (Hsp90) have demonstrated an unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained, but could be influenced by ectopically expressed Hsp90 in tumors. In this work, we synthesized Hsp90 inhibitors that can carry optical or radioiodinated probes via a polyethyleneglycol tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein occurs at the plasma membrane. In mice, we observed exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors that target ectopic Hsp90 can be used to detect breast cancer malignancies through noninvasive imaging.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Halogenação , Humanos , Radioisótopos do Iodo/química , Marcação por Isótopo , Células MCF-7 , Camundongos , Camundongos SCID , Transplante Heterólogo
19.
Bioorg Med Chem ; 20(10): 3298-305, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22520629

RESUMO

Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media.


Assuntos
Cromatografia de Afinidade/instrumentação , Proteínas de Choque Térmico HSP90/metabolismo , Resinas Sintéticas/química , Resinas Sintéticas/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP90/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Ligação Proteica , Proteômica , Sensibilidade e Especificidade , Suínos
20.
J Biol Chem ; 282(7): 4884-4893, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17158456

RESUMO

Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Morte Celular/fisiologia , Proteínas Quinases Associadas com Morte Celular , Ativação Enzimática/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Miosinas/metabolismo , Peptídeos/farmacologia , Fosforilação , Proteômica , Fibras de Estresse/metabolismo , Suínos , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA