Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Immunol ; 8(86): eadf8161, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37566678

RESUMO

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Camundongos , Humanos , Animais , COVID-19/metabolismo , SARS-CoV-2 , Macrófagos , Pulmão , Camundongos Transgênicos
2.
Sci Immunol ; 8(84): eadd6910, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352372

RESUMO

The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component ß-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.


Assuntos
Granulócitos , Hematopoese , Camundongos , Humanos , Animais , Neutrófilos , Candida albicans , Medula Óssea , Mamíferos
3.
mBio ; 13(5): e0174622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036514

RESUMO

Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics. IMPORTANCE Cerebral malaria is a severe complication of Plasmodium falciparum infection that causes the loss of blood-brain barrier integrity and frequently results in death. Here, we compared the effect of P. falciparum-infected red blood cells and inflammatory cytokines, like TNF-α, in the loss of BBB integrity. We observed that while TNF-α induced a small increase in barrier permeability, P. falciparum-infected red blood cells led to a severe loss of barrier integrity. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malária Cerebral/parasitologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Malária Falciparum/parasitologia , Encéfalo/parasitologia , Barreira Hematoencefálica , Citocinas/metabolismo
4.
Sci Immunol ; 7(70): eabo4652, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427177

RESUMO

Single-cell transcriptomic data identifies major activation paths of monocyte-derived macrophages as a framework for inflammatory tissue macrophages.


Assuntos
Macrófagos , Transcriptoma , Fenótipo
5.
J Leukoc Biol ; 110(6): 1269-1276, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34467547

RESUMO

Cardiovascular diseases are rising in developing countries with increasing urbanization and lifestyle changes and remains a major cause of death in the developed world. In this mini review, we discuss the possibility that the effect of helminth infections on the immune system and the microbiota may affect risk factors in cardiovascular diseases such as atherosclerosis, as part of the hygiene hypothesis. The effects of Type 2 immune responses induced by helminths and helminth derived molecules on regulating metabolism and Mϕ function could be a mechanistic link for further investigation. We emphasize the complexity and difficulties in determining indirect or direct and causal relationships between helminth infection status and cardiovascular diseases. New experimental models, such as rewilding laboratory mice, whereby different aspects of the environment and host genetics can be carefully dissected may provide further mechanistic insights and therapeutic strategies for treating cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Helmintíase/imunologia , Hipótese da Higiene , Macrófagos/imunologia , Microbiota/imunologia , Animais , Interações Hospedeiro-Parasita/imunologia , Humanos
6.
Elife ; 102021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720008

RESUMO

Atherosclerosis is a disease of chronic inflammation. We investigated the roles of the cytokines IL-4 and IL-13, the classical activators of STAT6, in the resolution of atherosclerosis inflammation. Using Il4-/-Il13-/- mice, resolution was impaired, and in control mice, in both progressing and resolving plaques, levels of IL-4 were stably low and IL-13 was undetectable. This suggested that IL-4 is required for atherosclerosis resolution, but collaborates with other factors. We had observed increased Wnt signaling in macrophages in resolving plaques, and human genetic data from others showed that a loss-of-function Wnt mutation was associated with premature atherosclerosis. We now find an inverse association between activation of Wnt signaling and disease severity in mice and humans. Wnt enhanced the expression of inflammation resolving factors after treatment with plaque-relevant low concentrations of IL-4. Mechanistically, activation of the Wnt pathway following lipid lowering potentiates IL-4 responsiveness in macrophages via a PGE2/STAT3 axis.


Assuntos
Aterosclerose/terapia , Interleucina-4/administração & dosagem , Macrófagos/metabolismo , Via de Sinalização Wnt , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-4/metabolismo , Masculino , Camundongos
7.
FASEB J ; 35(2): e21331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476078

RESUMO

Type 2 immunity plays an essential role in the maintenance of metabolic homeostasis and its disruption during obesity promotes meta-inflammation and insulin resistance. Infection with the helminth parasite Schistosoma mansoni and treatment with its soluble egg antigens (SEA) induce a type 2 immune response in metabolic organs and improve insulin sensitivity and glucose tolerance in obese mice, yet, a causal relationship remains unproven. Here, we investigated the effects and underlying mechanisms of the T2 ribonuclease omega-1 (ω1), one of the major S mansoni immunomodulatory glycoproteins, on metabolic homeostasis. We show that treatment of obese mice with plant-produced recombinant ω1, harboring similar glycan motifs as present on the native molecule, decreased body fat mass, and improved systemic insulin sensitivity and glucose tolerance in a time- and dose-dependent manner. This effect was associated with an increase in white adipose tissue (WAT) type 2 T helper cells, eosinophils, and alternatively activated macrophages, without affecting type 2 innate lymphoid cells. In contrast to SEA, the metabolic effects of ω1 were still observed in obese STAT6-deficient mice with impaired type 2 immunity, indicating that its metabolic effects are independent of the type 2 immune response. Instead, we found that ω1 inhibited food intake, without affecting locomotor activity, WAT thermogenic capacity or whole-body energy expenditure, an effect also occurring in leptin receptor-deficient obese and hyperphagic db/db mice. Altogether, we demonstrate that while the helminth glycoprotein ω1 can induce type 2 immunity, it improves whole-body metabolic homeostasis in obese mice by inhibiting food intake via a STAT6-independent mechanism.


Assuntos
Ingestão de Alimentos , Endorribonucleases/uso terapêutico , Glicoproteínas/uso terapêutico , Proteínas de Helminto/uso terapêutico , Obesidade/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Endorribonucleases/farmacologia , Glicoproteínas/farmacologia , Proteínas de Helminto/farmacologia , Locomoção , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Schistosoma mansoni/enzimologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Termogênese , Nicotiana/genética , Nicotiana/metabolismo
8.
Gastroenterology ; 160(5): 1679-1693, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359089

RESUMO

BACKGROUND & AIMS: Restorative proctocolectomy with ileal pouch-anal anastomosis is a surgical procedure in patients with ulcerative colitis refractory to medical therapies. Pouchitis, the most common complication, is inflammation of the pouch of unknown etiology. To define how the intestinal immune system is distinctly organized during pouchitis, we analyzed tissues from patients with and without pouchitis and from patients with ulcerative colitis using single-cell RNA sequencing (scRNA-seq). METHODS: We examined pouch lamina propria CD45+ hematopoietic cells from intestinal tissues of ulcerative colitis patients with (n = 15) and without an ileal pouch-anal anastomosis (n = 11). Further in silico meta-analysis was performed to generate transcriptional interaction networks and identify biomarkers for patients with inflamed pouches. RESULTS: In addition to tissue-specific signatures, we identified a population of IL1B/LYZ+ myeloid cells and FOXP3/BATF+ T cells that distinguish inflamed tissues, which we further validated in other scRNA-seq datasets from patients with inflammatory bowel disease (IBD). Cell-type-specific transcriptional markers obtained from scRNA-seq was used to infer representation from bulk RNA sequencing datasets, which further implicated myeloid cells expressing IL1B and S100A8/A9 calprotectin as interacting with stromal cells, and Bacteroidales and Clostridiales bacterial taxa. We found that nonresponsiveness to anti-integrin biologic therapies in patients with ulcerative colitis was associated with the signature of IL1B+/LYZ+ myeloid cells in a subset of patients. CONCLUSIONS: Features of intestinal inflammation during pouchitis and ulcerative colitis are similar, which may have clinical implications for the management of pouchitis. scRNA-seq enables meta-analysis of multiple studies, which may facilitate the identification of biomarkers to personalize therapy for patients with IBD. The processed single cell count tables are provided in Gene Expression Omnibus; GSE162335. Raw sequence data are not public and are protected by controlled-access for patient privacy.


Assuntos
Colite Ulcerativa/cirurgia , Perfilação da Expressão Gênica , Pouchite/genética , Proctocolectomia Restauradora/efeitos adversos , Análise de Célula Única , Transcriptoma , Adolescente , Adulto , Estudos de Casos e Controles , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Bolsas Cólicas/imunologia , Bolsas Cólicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Fenótipo , Pouchite/imunologia , Pouchite/patologia , RNA-Seq , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem
9.
J Immunol ; 205(4): 1070-1083, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32661179

RESUMO

IL-4 activates macrophages to adopt distinct phenotypes associated with clearance of helminth infections and tissue repair, but the phenotype depends on the cellular lineage of these macrophages. The molecular basis of chromatin remodeling in response to IL-4 stimulation in tissue-resident and monocyte-derived macrophages is not understood. In this study, we find that IL-4 activation of different lineages of peritoneal macrophages in mice is accompanied by lineage-specific chromatin remodeling in regions enriched with binding motifs of the pioneer transcription factor PU.1. PU.1 motif is similarly associated with both tissue-resident and monocyte-derived IL-4-induced accessible regions but has different lineage-specific DNA shape features and predicted cofactors. Mutation studies based on natural genetic variation between C57BL/6 and BALB/c mouse strains indicate that accessibility of these IL-4-induced regions can be regulated through differences in DNA shape without direct disruption of PU.1 motifs. We propose a model whereby DNA shape features of stimulation-dependent genomic elements contribute to differences in the accessible chromatin landscape of alternatively activated macrophages on different genetic backgrounds that may contribute to phenotypic variations in immune responses.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , DNA/genética , Macrófagos Peritoneais/fisiologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Sítios de Ligação/genética , Imunidade/genética , Interleucina-4/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Mutação/genética , Ligação Proteica/genética
10.
J Immunol ; 204(12): 3389-3399, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32350082

RESUMO

Myeloid cells are a vital component of innate immunity and comprise monocytes, macrophages, dendritic cells, and granulocytes. How myeloid cell lineage affects activation states in response to cytokines remains poorly understood. The cytokine environment and cellular infiltrate during an inflammatory response may contain prognostic features that predict disease outcome. In this study, we analyzed the transcriptional responses of human monocytes, macrophages, dendritic cells, and neutrophils in response to stimulation by IFN-γ, IFN-ß, IFN-λ, IL-4, IL-13, and IL-10 cytokines to better understand the heterogeneity of activation states in inflammatory conditions. This generated a myeloid cell-cytokine-specific response matrix that can infer representation of myeloid cells and the cytokine environment they encounter during infection, in tumors and in whole blood. Neutrophils were highly responsive to type 1 and type 2 cytokine stimulation but did not respond to IL-10. We identified transcripts specific to IFN-ß stimulation, whereas other IFN signature genes were upregulated by both IFN-γ and IFN-ß. When we used our matrix to deconvolute blood profiles from tuberculosis patients, the IFN-ß-specific neutrophil signature was reduced in tuberculosis patients with active disease, whereas the shared response to IFN-γ and IFN-ß in neutrophils was increased. When applied to glioma patients, transcripts of neutrophils exposed to IL-4/IL-13 and monocyte responses to IFN-γ or IFN-ß emerged as opposing predictors of patient survival. Hence, by dissecting how different myeloid cells respond to cytokine activation, we can delineate biological roles for myeloid cells in different cytokine environments during disease processes, especially during infection and tumor progression.


Assuntos
Citocinas/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Tuberculose/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Imunidade Inata/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Neoplasias/patologia , Prognóstico , Tuberculose/patologia
11.
Circ Res ; 127(3): 335-353, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32336197

RESUMO

RATIONALE: Regression of atherosclerosis is an important clinical goal; however, the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, yet the numbers of these immunosuppressive cells decrease with disease progression, and whether they contribute to atherosclerosis regression is not known. OBJECTIVE: We investigated the roles of Tregs in the resolution of atherosclerotic inflammation, tissue remodeling, and plaque contraction during atherosclerosis regression. METHODS AND RESULTS: Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. Single-cell RNA-sequencing of plaque immune cells revealed that unlike Tregs from progressing plaques that expressed markers of natural Tregs derived from the thymus, Tregs in regressing plaques lacked Nrp1 expression, suggesting that they are induced in the periphery during lipid-lowering therapy. To test whether Tregs are required for resolution of atherosclerotic inflammation and plaque regression, Tregs were depleted using CD25 monoclonal antibody in atherosclerotic mice during apolipoprotein B antisense oligonucleotide-mediated lipid lowering. Morphometric analyses revealed that Treg depletion blocked plaque remodeling and contraction, and impaired hallmarks of inflammation resolution, including dampening of the T helper 1 response, alternative activation of macrophages, efferocytosis, and upregulation of specialized proresolving lipid mediators. CONCLUSIONS: Our data establish essential roles for Tregs in resolving atherosclerotic cardiovascular disease and provide mechanistic insight into the pathways governing plaque remodeling and regression of disease.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Placa Aterosclerótica , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos/farmacologia , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/patologia , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Knockout para ApoE , Neuropilina-1/genética , Neuropilina-1/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
12.
Blood ; 135(26): 2388-2401, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32232483

RESUMO

A goal in precision medicine is to use patient-derived material to predict disease course and intervention outcomes. Here, we use mechanistic observations in a preclinical animal model to design an ex vivo platform that recreates genetic susceptibility to T-cell-mediated damage. Intestinal graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. We found that intestinal GVHD in mice deficient in Atg16L1, an autophagy gene that is polymorphic in humans, is reversed by inhibiting necroptosis. We further show that cocultured allogeneic T cells kill Atg16L1-mutant intestinal organoids from mice, which was associated with an aberrant epithelial interferon signature. Using this information, we demonstrate that pharmacologically inhibiting necroptosis or interferon signaling protects human organoids derived from individuals harboring a common ATG16L1 variant from allogeneic T-cell attack. Our study provides a roadmap for applying findings in animal models to individualized therapy that targets affected tissues.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Enteropatias/prevenção & controle , Organoides , Linfócitos T/imunologia , Acrilamidas/farmacologia , Animais , Autofagia , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Transplante de Medula Óssea/efeitos adversos , Técnicas de Cocultura , Colo/anormalidades , Feminino , Predisposição Genética para Doença , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Doenças Inflamatórias Intestinais/patologia , Enteropatias/imunologia , Enteropatias/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Nitrilas , Celulas de Paneth/patologia , Medicina de Precisão , Pirazóis/farmacologia , Pirimidinas , Quimera por Radiação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Sulfonamidas/farmacologia , Linfócitos T/transplante
13.
BMC Cancer ; 20(1): 151, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093640

RESUMO

BACKGROUND: Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy. METHODOLOGY: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy. RESULTS: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health. CONCLUSION: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bactérias/classificação , Microbioma Gastrointestinal/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Filogenia , Projetos Piloto , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Análise de Sequência de DNA/métodos
14.
PLoS One ; 14(12): e0225588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31841511

RESUMO

Macrophages can reprogram their metabolism in response to the surrounding stimuli, which affects their capacity to kill intracellular pathogens. We have investigated the metabolic and immune status of human macrophages after infection with the intracellular trypanosomatid parasites Leishmania donovani, L. amazonensis and T. cruzi and their capacity to respond to a classical polarizing stimulus (LPS and IFN-γ). We found that macrophages infected with Leishmania preferentially upregulate oxidative phosphorylation, which could be contributed by both host cell and parasite, while T. cruzi infection did not significantly increase glycolysis or oxidative phosphorylation. Leishmania and T. cruzi infect macrophages without triggering a strong inflammatory cytokine response, but infection does not prevent a potent response to LPS and IFN-γ. Infection appears to prime macrophages, since the cytokine response to activation with LPS and IFN-γ is more intense in infected macrophages compared to uninfected ones. Metabolic polarization in macrophages can influence infection and immune evasion of these parasites since preventing macrophage cytokine responses would help parasites to establish a persistent infection. However, macrophages remain responsive to classical inflammatory stimuli and could still trigger inflammatory cytokine secretion by macrophages.


Assuntos
Doença de Chagas/imunologia , Citocinas/metabolismo , Leishmaniose/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Células 3T3 , Animais , Células Cultivadas , Doença de Chagas/sangue , Doença de Chagas/parasitologia , Citocinas/imunologia , Voluntários Saudáveis , Humanos , Leishmania donovani/imunologia , Leishmania donovani/isolamento & purificação , Leishmania mexicana/imunologia , Leishmania mexicana/isolamento & purificação , Leishmaniose/sangue , Leishmaniose/parasitologia , Macrófagos/metabolismo , Metaboloma/imunologia , Camundongos , Fosforilação Oxidativa , Cultura Primária de Células , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/isolamento & purificação , Regulação para Cima
15.
J Immunol ; 203(3): 593-599, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31332080

RESUMO

Macrophages not only regulate intestinal homeostasis by recognizing pathogens to control enteric infections but also employ negative feedback mechanisms to prevent chronic inflammation. Hence, macrophages are intriguing targets for immune-mediated therapies, especially when barrier function in the gut is compromised to trigger aberrant inflammatory responses, most notably during inflammatory bowel diseases. Recently, there has been considerable progress in our understanding of human macrophage biology in different tissues, including the intestines. In this review, we discuss some new findings on the properties of distinct populations of intestinal macrophages, how resolution of inflammation and tissue repair by macrophages could be promoted by type 2 cytokines as well as other therapeutic interventions, and highlight some challenges for translating these findings into the future for this exciting area of immunology research.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Infecções Bacterianas/imunologia , Citocinas/imunologia , Helmintíase/imunologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Ativação de Macrófagos/imunologia
16.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830865

RESUMO

Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.


Assuntos
Aterosclerose/imunologia , Diferenciação Celular/genética , Macrófagos/imunologia , Células Precursoras de Monócitos e Macrófagos/fisiologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/imunologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA-Seq , Receptores de LDL/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Célula Única , Quimeras de Transplante
17.
Nat Commun ; 10(1): 1424, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926808

RESUMO

The drivers and the specification of CD4+ T cell differentiation in the tumor microenvironment and their contributions to tumor immunity or tolerance are incompletely understood. Using models of pancreatic ductal adenocarcinoma (PDA), we show that a distinct subset of tumor-infiltrating dendritic cells (DC) promotes PDA growth by directing a unique TH-program. Specifically, CD11b+CD103- DC predominate in PDA, express high IL-23 and TGF-ß, and induce FoxP3neg tumor-promoting IL-10+IL-17+IFNγ+ regulatory CD4+ T cells. The balance between this distinctive TH program and canonical FoxP3+ TREGS is unaffected by pattern recognition receptor ligation and is modulated by DC expression of retinoic acid. This TH-signature is mimicked in human PDA where it is associated with immune-tolerance and diminished patient survival. Our data suggest that CD11b+CD103- DC promote CD4+ T cell tolerance in PDA which may underscore its resistance to immunotherapy.


Assuntos
Células Dendríticas/imunologia , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Neoplasias Pancreáticas/imunologia , Linfócitos T Reguladores/imunologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Diferenciação Celular , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Humanos , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Transdução de Sinais , Células Th17/imunologia , Receptor 2 Toll-Like/metabolismo , Tretinoína/metabolismo , Neoplasias Pancreáticas
18.
Sci Rep ; 8(1): 14277, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250162

RESUMO

We explored the gut microbiota profile among HIV-infected individuals with diverse immune recovery profiles following long-term suppressive ART and investigated the relationship between the altered bacteria with markers of immune dysfunction. The microbiota profile of rectal swabs from 26 HIV-infected individuals and 20 HIV-uninfected controls were examined. Patients were classified as suboptimal responders, sIR (n = 10, CD4 T-cell <350 cells/ul) and optimal responders, oIR (n = 16, CD4 T-cell >500 cells/ul) after a minimum of 2 years on suppressive ART. Canonical correlation analysis(CCA) and multiple regression modelling were used to explore the association between fecal bacterial taxa abundance and immunological profiles in optimal and suboptimal responders. We found Fusobacterium was significantly enriched among the HIV-infected and the sIR group. CCA results showed that Fusobacterium abundance was negatively correlated with CD4 T-cell counts, but positively correlated with CD4 T-cell activation and CD4 Tregs. Multiple linear regression analysis adjusted for age, baseline CD4 T-cell count, antibiotic exposure and MSM status indicated that higher Fusobacterium relative abundance was independently associated with poorer CD4 T-cell recovery following ART. Enrichment of Fusobacterium was associated with reduced immune recovery and persistent immune dysfunction following ART. Modulating the abundance of this bacterial taxa in the gut may be a viable intervention to improve immune reconstitution in our setting.


Assuntos
Fusobacterium/imunologia , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Sistema Imunitário/microbiologia , Adulto , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/imunologia , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Fusobacterium/crescimento & desenvolvimento , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , HIV/patogenicidade , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Homossexualidade Masculina , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade
19.
Immunity ; 47(6): 1024-1036, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262347

RESUMO

Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology.


Assuntos
Helmintíase/imunologia , Imunidade Celular , Macrófagos/imunologia , Nematoides/imunologia , Células Th2/imunologia , Trematódeos/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/parasitologia , Regulação da Expressão Gênica/imunologia , Helmintíase/genética , Helmintíase/parasitologia , Homeostase/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Macrófagos/parasitologia , Mastócitos/imunologia , Mastócitos/parasitologia , Microbiota/imunologia , Células Th2/parasitologia
20.
Proc Natl Acad Sci U S A ; 114(49): E10568-E10577, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29162686

RESUMO

Dendritic cells (DCs) are activated by pathogens to initiate and shape immune responses. We found that the activation of DCs by Plasmodium falciparum, the main causative agent of human malaria, induces a highly unusual phenotype by which DCs up-regulate costimulatory molecules and secretion of chemokines, but not of cytokines typical of inflammatory responses (IL-1ß, IL-6, IL-10, TNF). Similar results were obtained with DCs obtained from malaria-naïve US donors and malaria-experienced donors from Mali. Contact-dependent cross-talk between the main DC subsets, plasmacytoid and myeloid DCs (mDCs) was necessary for increased chemokine and IFN-α secretion in response to the parasite. Despite the absence of inflammatory cytokine secretion, mDCs incubated with P. falciparum-infected erythrocytes activated antigen-specific naïve CD4+ T cells to proliferate and secrete Th1-like cytokines. This unexpected response of human mDCs to P. falciparum exhibited a transcriptional program distinct from a classical LPS response, pointing to unique P. falciparum-induced activation pathways that may explain the uncharacteristic immune response to malaria.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Ativação Linfocitária , Plasmodium falciparum/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Técnicas de Cocultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/parasitologia , Regulação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Mali , Plasmodium falciparum/crescimento & desenvolvimento , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA