Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559000

RESUMO

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

2.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
3.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938761

RESUMO

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero E6 and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, whereas SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures, we observe the absence of IFN-I stimulation by SARS-CoV-2 alone but detect the failure to counteract STAT1 phosphorylation upon IFN-I pretreatment, resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment postinfection and found that SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame 3b (ORF3b) and genetic differences versus ORF6 suggest that the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.IMPORTANCE With the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Interferon Tipo I/farmacologia , Interferon-alfa/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Animais , Antivirais/antagonistas & inibidores , Antivirais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Fosforilação , Proteínas Recombinantes/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
4.
J Virol ; 89(21): 10970-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311885

RESUMO

UNLABELLED: The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1. IMPORTANCE: Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of MERS-CoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. The nonstructural protein 1 (nsp1) of CoVs is one such protein that inhibits host gene expression and is a major virulence factor. This study presents evidence for a strategy used by MERS-CoV nsp1 to inhibit host gene expression that has not been described previously for any viral protein. The present study represents a meaningful step toward a better understanding of the factors and molecular mechanisms governing the virulence and pathogenesis of MERS-CoV.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/metabolismo , Northern Blotting , Western Blotting , Citoplasma/metabolismo , Primers do DNA , Dipeptidil Peptidase 4/metabolismo , Eletroporação , Células HEK293 , Humanos , Microscopia Confocal , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Vaccine ; 26(6): 797-808, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18191004

RESUMO

We tested the efficacy of coronavirus-like particles (VLPs) for protecting mice against severe acute respiratory syndrome coronavirus (SCoV) infection. Coexpression of SCoV S protein and E, M and N proteins of mouse hepatitis virus in 293T or CHO cells resulted in the efficient production of chimeric VLPs carrying SCoV S protein. Balb/c mice inoculated with a mixture of chimeric VLPs and alum twice at an interval of four weeks were protected from SCoV challenge, as indicated by the absence of infectious virus in the lungs. The same groups of mice had high levels of SCoV-specific neutralizing antibodies, while mice in the negative control groups, which were not immunized with chimeric VLPs, failed to manifest neutralizing antibodies, suggesting that SCoV-specific neutralizing antibodies are important for the suppression of viral replication within the lungs. Despite some differences in the cellular composition of inflammatory infiltrates, we did not observe any overt lung pathology in the chimeric-VLP-treated mice, when compared to the negative control mice. Our results show that chimeric VLP can be an effective vaccine strategy against SCoV infection.


Assuntos
Glicoproteínas de Membrana/metabolismo , Vírus Reordenados/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinação , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/administração & dosagem , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Linhagem Celular , Proteínas M de Coronavírus , Feminino , Humanos , Injeções Intramusculares , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Vírus Reordenados/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Alinhamento de Sequência , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA