Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 44(8): 1377-1388, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532004

RESUMO

Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.


Assuntos
Ácidos Araquidônicos/fisiologia , Emoções/fisiologia , Endocanabinoides/fisiologia , Etanolaminas/metabolismo , Ácido Glutâmico/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Ácidos Palmíticos/metabolismo , Amidas , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Memória/fisiologia , Camundongos , Neurônios/fisiologia , Ácidos Oleicos , Alcamidas Poli-Insaturadas/metabolismo , Transmissão Sináptica/fisiologia , Regulação para Cima
2.
Neuropharmacology ; 99: 347-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272110

RESUMO

Chronic nicotine administration in animals, and smoking in humans, causes up-regulation of α4ß2* neuronal nicotinic receptors (nAChRs), which has been hypothesized to contribute to the addictive actions of nicotine. We used a rat model to test whether such up-regulatory effects differ in adolescents versus adults, and in males versus females. Following chronic treatment with nicotine or saline via subcutaneous osmotic minipumps, we measured α4ß2 and α4ß2α5 nAChRs in cerebral cortex using [3H]epibatidine to label assembled nAChRs, and selective antibodies to measure the individual subunits via immunoprecipitation. For the first time, we provide a detailed characterization of the response of both α4ß2 and α4ß2α5 nAChRs in female adolescent rat cerebral cortex. We found differences in nicotine-induced up-regulation between males and females in early adolescence that are absent in both late adolescence and adulthood. Males showed significant up-regulation at PN28 which was absent in age-matched females. These results demonstrate sex differences in the susceptibility of α4ß2* nAChRs to the effects of chronic nicotine exposure in the cerebral cortex based on age.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Agonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo , Caracteres Sexuais , Animais , Sítios de Ligação/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes , Córtex Cerebral/fisiologia , Feminino , Imunoprecipitação , Masculino , Nicotina/toxicidade , Piridinas , Ratos Sprague-Dawley , Trítio , Regulação para Cima/efeitos dos fármacos
3.
Int J Neuropsychopharmacol ; 19(2)2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232789

RESUMO

BACKGROUND: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.


Assuntos
Ansiedade/metabolismo , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Ácido Glutâmico/metabolismo , Glicerídeos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Convulsões/metabolismo , Animais , Ansiedade/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/psicologia , Transdução de Sinais/fisiologia
4.
J Pharmacol Exp Ther ; 343(2): 441-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22899752

RESUMO

Chronic nicotine administration increases α4ß2 neuronal nicotinic acetylcholine receptor (nAChR) density in brain. This up-regulation probably contributes to the development and/or maintenance of nicotine dependence. nAChR up-regulation is believed to be triggered at the ligand binding site, so it is not surprising that other nicotinic ligands also up-regulate nAChRs in the brain. These other ligands include varenicline, which is currently used for smoking cessation therapy. Sazetidine-A (saz-A) is a newer nicotinic ligand that binds with high affinity and selectivity at α4ß2* nAChRs. In behavioral studies, saz-A decreases nicotine self-administration and increases performance on tasks of attention. We report here that, unlike nicotine and varenicline, chronic administration of saz-A at behaviorally active and even higher doses does not up-regulate nAChRs in rodent brains. We used a newly developed method involving radioligand binding to measure the concentrations and nAChR occupancy of saz-A, nicotine, and varenicline in brains from chronically treated rats. Our results indicate that saz-A reached concentrations in the brain that were ∼150 times its affinity for α4ß2* nAChRs and occupied at least 75% of nAChRs. Thus, chronic administration of saz-A did not up-regulate nAChRs despite it reaching brain concentrations that are known to bind and desensitize virtually all α4ß2* nAChRs in brain. These findings reinforce a model of nicotine addiction based on desensitization of up-regulated nAChRs and introduce a potential new strategy for smoking cessation therapy in which drugs such as saz-A can promote smoking cessation without maintaining nAChR up-regulation, thereby potentially increasing the rate of long-term abstinence from nicotine.


Assuntos
Azetidinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Azetidinas/administração & dosagem , Azetidinas/sangue , Benzazepinas/administração & dosagem , Benzazepinas/sangue , Benzazepinas/farmacologia , Sítios de Ligação , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Feminino , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nicotina/administração & dosagem , Nicotina/sangue , Nicotina/farmacologia , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/sangue , Agonistas Nicotínicos/farmacologia , Gravidez , Piridinas/administração & dosagem , Piridinas/sangue , Quinoxalinas/administração & dosagem , Quinoxalinas/sangue , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Regulação para Cima/efeitos dos fármacos , Vareniclina
5.
J Neurochem ; 119(1): 153-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21806615

RESUMO

Nicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs. The receptor density was measured by [¹²5I]epibatidine ([¹²5I]EB) binding. Untreated and nicotine-treated neurons were compared from several regions of embryonic (E19) rat brain. Twelve days of treatment with 10 µM nicotine produced a twofold up-regulation of nAChRs. Biotinylation and whole-cell binding studies indicated that up-regulation resulted from an increase in the number of cell surface receptors as well as intracellular receptors. nAChR subunit composition in cortical and hippocampal neurons was assessed by immunoprecipitation with subunit-selective antibodies. These neurons contain predominantly α4, ß2 and α5 subunits, but α2, α3, α6 and ß4 subunits were also detected. Chronic nicotine exposure yielded a twofold increase in the ß2-containing receptors and a smaller up-regulation in the α4-containing nAChRs. To explore the mechanisms of up-regulation we investigated the effects of nicotine on the receptor turnover rate. We found that the turnover rate of surface receptors was > 2 weeks and chronic nicotine exposure had no effect on this rate.


Assuntos
Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Biotinilação , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cicloeximida/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imunoprecipitação , Metionina/metabolismo , Gravidez , Inibidores da Síntese de Proteínas/farmacologia , Piridinas , Ratos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA