RESUMO
Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients. α-Adrenergic-antagonists were identified as drugs that most oppose the VEGFRi proteomic signature. Doxazosin, one such α-antagonist, prevented EC dysfunction in murine, canine, and human aortic ECs. In mice with sorafenib-induced-hypertension, doxazosin mitigated EC dysfunction but not hypertension or glomerular endotheliosis, while lisinopril mitigated hypertension and glomerular endotheliosis without impacting EC function. Hence, reversing EC dysfunction was insufficient to mitigate VEGFRi-induced-hypertension in this mouse model. Canine cancer patients with VEGFRi-induced-hypertension were randomized to doxazosin or lisinopril and both agents significantly decreased SBP. The canine clinical trial supports safety and efficacy of doxazosin and lisinopril as antihypertensives for VEGFRi-induced-hypertension and the potential of trials in canines with spontaneous cancer to accelerate translation. The overall findings demonstrate the utility of phosphoproteomics to identify EC-protective agents to mitigate cardio-oncology side effects.
Assuntos
Doxazossina , Células Endoteliais , Hipertensão , Receptores de Fatores de Crescimento do Endotélio Vascular , Animais , Cães , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Doxazossina/farmacologia , Doxazossina/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteômica/métodos , Pressão Sanguínea/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Lisinopril/farmacologia , Lisinopril/uso terapêutico , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêuticoRESUMO
While liquid biopsy has potential to transform cancer diagnostics through minimally-invasive detection and monitoring of tumors, the impact of preanalytical factors such as the timing and anatomical location of blood draw is not well understood. To address this gap, we leveraged pet dogs with spontaneous cancer as a model system, as their compressed disease timeline facilitates rapid diagnostic benchmarking. Key liquid biopsy metrics from dogs were consistent with existing reports from human patients. The tumor content of samples was higher from venipuncture sites closer to the tumor and from a central vein. Metrics also differed between lymphoma and non-hematopoietic cancers, urging cancer-type-specific interpretation. Liquid biopsy was highly sensitive to disease status, with changes identified soon after post chemotherapy administration, and trends of increased tumor fraction and other metrics observed prior to clinical relapse in dogs with lymphoma or osteosarcoma. These data support the utility of pet dogs with cancer as a relevant system for advancing liquid biopsy platforms.
RESUMO
Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.
Assuntos
Modelos Animais de Doenças , Doxorrubicina , Fibrose , Interferon gama , Linfócitos T Citotóxicos , Animais , Doxorrubicina/efeitos adversos , Fibrose/induzido quimicamente , Humanos , Cães , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Interferon gama/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/toxicidade , Camundongos Endogâmicos C57BL , Cardiotoxicidade/etiologia , Receptores CXCR3/metabolismo , Quimiocina CXCL10/metabolismo , Masculino , Granzimas/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Degranulação Celular/efeitos dos fármacos , Quimiocina CXCL9/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Sístole/efeitos dos fármacos , Camundongos , Feminino , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Adesão Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacosAssuntos
Doenças do Cão , Animais , Doenças do Cão/patologia , Índice Mitótico/veterinária , Mastócitos/patologia , CãesRESUMO
BACKGROUND: To explore the safety and utility of combining low dose single-agent doxorubicin with a canine specific anti-CD20 monoclonal antibody (1E4-cIgGB) in client owned dogs with untreated B-cell lymphoma. ANIMALS: Forty-two client-owned dogs with untreated B-cell lymphoma. METHODS: A prospective, single arm, open label clinical trial of dogs with B-cell lymphoma were enrolled to receive 1E4-cIgGB and doxorubicin in addition to 1 of 3 immunomodulatory regimens. B-cell depletion was monitored by flow cytometry performed on peripheral blood samples at each visit. RESULTS: Dogs demonstrated a statistically significant depletion in CD21+ B-cells 7 days following the first antibody infusion (median fraction of baseline at 7 days = 0.04, P < .01) that persisted throughout treatment (median fraction of baseline at 21 days = 0.01, P < .01) whereas CD5+ T-cells remained unchanged (median fraction of baseline at 7 days = 1.05, P = .88; median fraction of baselie at 7 days = 0.79, P = .42; Figure 1; Supplemental Table 3). Recovery of B-cells was delayed, with at Day 196, only 6/17 dogs (35%) remaining on the study had CD21+ counts >0.5 of baseline, indicating sustained B cell depletion at 4+ months after the final treatment. 1E4-cIgGB was well tolerated with only 1 dog exhibiting a hypersensitivity event within minutes of the last antibody infusion. CONCLUSIONS: The canine 1E4-cIgGB anti-CD20 monoclonal antibody is apparently safe when administered with doxorubicin and effectively depletes B-cells in dogs with DLBCL.
Assuntos
Anticorpos Monoclonais , Doenças do Cão , Doxorrubicina , Linfoma Difuso de Grandes Células B , Animais , Cães , Doenças do Cão/tratamento farmacológico , Doenças do Cão/imunologia , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Feminino , Masculino , Linfoma Difuso de Grandes Células B/veterinária , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/efeitos adversos , Estudos Prospectivos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Antígenos CD20/imunologiaRESUMO
Cutaneous T-cell lymphoma (CTCL) is an uncommon type of lymphoma involving malignant skin-resident or skin-homing T cells. Canine epitheliotropic lymphoma (EL) is the most common form of CTCL in dogs, and it also spontaneously arises from T lymphocytes in the mucosa and skin. Clinically, it can be difficult to distinguish early-stage CTCLs apart from other forms of benign interface dermatitis (ID) in both dogs and people. Our objective was to identify novel biomarkers that can distinguish EL from other forms of ID, and perform comparative transcriptomics of human CTCL and canine EL. Here, we present a retrospective gene expression study that employed archival tissue from biorepositories. We analyzed a discovery cohort of 6 canines and a validation cohort of 8 canines with EL which occurred spontaneously in client-owned companion dogs. We performed comparative targeted transcriptomics studies using NanoString to assess 160 genes from lesional skin biopsies from the discovery cohort and 800 genes from the validation cohort to identify any significant differences that may reflect oncogenesis and immunopathogenesis. We further sought to determine if gene expression in EL and CTCL are conserved across humans and canines by comparing our data to previously published human datasets. Similar chemokine profiles were observed in dog EL and human CTCL, and analyses were performed to validate potential biomarkers and drivers of disease. In dogs, we found enrichment of T cell gene signatures, with upregulation of IFNG, TNF, PRF1, IL15, CD244, CXCL10, and CCL5 in EL in dogs compared to healthy controls. Importantly, CTSW, TRAT1 and KLRK1 distinguished EL from all other forms of interface dermatitis we studied, providing much-needed biomarkers for the veterinary field. XCL1/XCL2 were also highly specific of EL in our validation cohort. Future studies exploring the oncogenesis of spontaneous lymphomas in companion animals will expand our understanding of these disorders. Biomarkers may be useful for predicting disease prognosis and treatment responses. We plan to use our data to inform future development of targeted therapies, as well as for repurposing drugs for both veterinary and human medicine.
RESUMO
Pet dogs develop spontaneous cancers at a rate estimated to be five times higher than that of humans, providing a unique opportunity to study disease biology and evaluate novel therapeutic strategies in a model system that possesses an intact immune system and mirrors key aspects of human cancer biology. Despite decades of interest, effective utilization of pet dog cancers has been hindered by a limited repertoire of necessary cellular and molecular reagents for both in vitro and in vivo studies, as well as a dearth of information regarding the genomic landscape of these cancers. Recently, many of these critical gaps have been addressed through the generation of a highly annotated canine reference genome, the creation of several tools necessary for multi-omic analysis of canine tumours, and the development of a centralized repository for key genomic and associated clinical information from canine cancer patients, the Integrated Canine Data Commons. Together, these advances have catalysed multidisciplinary efforts designed to integrate the study of pet dog cancers more effectively into the translational continuum, with the ultimate goal of improving human outcomes. The current review summarizes this recent progress and provides a guide to resources and tools available for comparative study of pet dog cancers.
Assuntos
Doenças do Cão , Neoplasias , Humanos , Cães , Animais , Doenças do Cão/genética , Doenças do Cão/patologia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/veterinária , Genômica , Oncologia , Modelos Animais de DoençasRESUMO
Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells with short survival times. Understanding the genomic landscape of HSA may aid in developing therapeutic strategies for dogs and may also inform therapies for the rare and aggressive human cancer angiosarcoma. The objectives of this study were to build a framework for leveraging real-world genomic and clinical data that could provide the foundation for precision medicine in veterinary oncology, and to determine the relationships between genomic and clinical features in canine splenic HSA. One hundred and nine dogs with primary splenic HSA treated by splenectomy that had tumour sequencing via the FidoCure® Precision Medicine Platform targeted sequencing panel were enrolled. Patient signalment, weight, metastasis at diagnosis and overall survival time were retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship to patient variables including outcome were assessed. Somatic mutations in TP53 (n = 44), NRAS (n = 20) and PIK3CA (n = 19) were most common. Survival was associated with presence of metastases at diagnosis and germline variants in SETD2 and NOTCH1. Age at diagnosis was associated with somatic NRAS mutations and breed. TP53 and PIK3CA somatic mutations were found in larger dogs, while germline SETD2 variants were found in smaller dogs. We identified both somatic mutations and germline variants associated with clinical variables including age, breed and overall survival. These genetic changes may be useful prognostic factors and provide insight into the genomic landscape of hemangiosarcoma.
Assuntos
Doenças do Cão , Hemangiossarcoma , Neoplasias Esplênicas , Humanos , Cães , Animais , Hemangiossarcoma/genética , Hemangiossarcoma/veterinária , Hemangiossarcoma/tratamento farmacológico , Células Endoteliais , Estudos Retrospectivos , Doenças do Cão/genética , Doenças do Cão/tratamento farmacológico , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/veterinária , Neoplasias Esplênicas/tratamento farmacológico , Genômica , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/uso terapêuticoRESUMO
Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. A challenge that remains is selection of treatment to improve outcomes. The dogs in this study were part of a larger clinical trial evaluating the use of combinations of doxorubicin chemotherapy, anti-CD20 monoclonal antibody, and one of three small molecule inhibitors: KPT-9274, TAK-981, or RV1001. We hypothesized that significant differential expression of genes (DEGs) in the tumors at baseline could help predict which dogs would respond better to each treatment based on the molecular pathways targeted by each drug. To this end, we evaluated gene expression in lymph node aspirates from 18 trial dogs using the NanoString nCounter Canine Immuno-oncology (IO) Panel. We defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. We analyzed all dogs at baseline and compared poor responders to good responders, and found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. There was minimal DEG overlap between treatment arms, prompting separate analyses for each treatment cohort. Increased CREBBP and CDKN1A for KPT-9274, increased TLR3 for TAK-981, and increased PI3Kδ, AKT3, and PTEN, and decreased NRAS for RV1001 were associated with better prognoses. Trends for selected candidate biomarker genes were confirmed via qPCR. Our findings emphasize the heterogeneity in DLBCL, similarities and differences between canine and human DLBCL, and ultimately identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs.
Assuntos
Linfoma Difuso de Grandes Células B , Transcriptoma , Humanos , Cães , Animais , Imunoterapia , Acrilamidas , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genéticaRESUMO
Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity. We aimed to optimize a canine cardiac slice culture system for exploration of cancer therapy impact on intact cardiac tissue, creating a translatable model that maintains autophagy in culture and is amenable to autophagy modulation. Canine cardiac tissue slices (350 µm) were generated from left ventricular free wall collected from euthanized client-owned dogs (n = 7) free of cardiovascular disease at the Foster Hospital for Small Animals at Tufts University. Cell viability and apoptosis were quantified with MTT assay and TUNEL staining. Cardiac slices were challenged with doxorubicin and an autophagy activator (rapamycin) or inhibitor (chloroquine). Autophagic flux components (LC3, p62) were quantified by western blot. Cardiac slices retained high cell viability for >7 days in culture and basal levels of autophagic markers remained unchanged. Doxorubicin treatment resulted in perturbation of the autophagic flux and cell death, while rapamycin co-treatment restored normal autophagic flux and maintained cell survival. We developed an adult canine cardiac slice culture system appropriate for studying the effects of autophagic flux that may be applicable to drug toxicity evaluations.
Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Animais , Cães , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Autofagia , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Sirolimo/farmacologiaRESUMO
Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines. Acquired resistance to TZ-1 was developed and characterized in sensitive Rh41 cells. The BRD4 inhibitor, JQ1, was evaluated as an agent to prevent acquired TZ-1 resistance in Rh41 cells. The phosphorylation status of receptor tyrosine kinases (RTK) was assessed. Sensitivity to TZ-1 in vivo was determined in Rh41 parental and TZ-1-resistant xenografts. Of 20 sarcoma cell lines, only Rh41 was sensitive to TZ-1. Cells intrinsically resistant to TZ-1 expressed multiple (>10) activated RTKs or a relatively less complex set of activated RTKs (â¼5). TZ-1 decreased the phosphorylation of IGF-1R but had little effect on other phosphorylated RTKs in all resistant lines. TZ-1 rapidly induced activation of RTKs in Rh41 that was partially abrogated by knockdown of SOX18 and JQ1. Rh41/TZ-1 cells selected for acquired resistance to TZ-1 constitutively expressed multiple activated RTKs. TZ-1 treatment caused complete regressions in Rh41 xenografts and was significantly less effective against the Rh41/TZ-1 xenograft. Intrinsic resistance is a consequence of redundant signaling in pediatric sarcoma cell lines. Acquired resistance in Rh41 cells is associated with rapid induction of multiple RTKs, indicating a dynamic response to IGF-1R blockade and rapid development of resistance. The TZ-1 antibody had greater antitumor activity against Rh41 xenografts compared with other IGF-1R-targeted antibodies tested against this model.
Assuntos
Proteínas Nucleares , Sarcoma , Criança , Humanos , Fatores de Transcrição , Receptor IGF Tipo 1 , Sarcoma/tratamento farmacológico , Receptores de Somatomedina , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular , Fatores de Transcrição SOXFRESUMO
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Linhagem Celular , Variações do Número de Cópias de DNA , Cães , Genômica , Osteossarcoma/genética , Osteossarcoma/veterináriaRESUMO
Signal transducer and activator of transcription 3 (STAT3) dysregulation has been characterized in canine OS, with previous data suggesting that constitutive STAT3 activation contributes to survival and proliferation in OS cell lines in vitro. Recently, the contribution of STAT3 to tumour metabolism has been described across several tumour histologies, and understanding the metabolic implications of STAT3 loss may elucidate novel therapeutic approaches with synergistic activity. The objective of this work was to characterize metabolic benchmarks associated with STAT3 loss in canine OS. STAT3 expression and activation was evaluated using western blotting in canine OS cell lines OSCA8 and Abrams. STAT3 was deleted from these OS cell lines using CRISPR-Cas9, and the effects on proliferation, invasion and metabolism (respirometry, intracellular lactate) were determined. Loss of STAT3 was associated with decreased basal and compensatory glycolysis in canine OS cell lines, without modulation of cellular proliferation. Loss of STAT3 also resulted in diminished invasive capacity in vitro. Interestingly, the absence of STAT3 did not impact sensitivity to doxorubicin in vitro. Our data demonstrate that loss of STAT3 modulates features of aerobic glycolysis in canine OS impacting capacities for cellular invasions, suggesting a role for this transcription factor in metastasis.
Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Cães , Apoptose , Neoplasias Ósseas/fisiopatologia , Neoplasias Ósseas/veterinária , Linhagem Celular Tumoral , Proliferação de Células , Doenças do Cão/fisiopatologia , Osteossarcoma/fisiopatologia , Osteossarcoma/veterinária , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Deleção de GenesRESUMO
PURPOSE OF REVIEW: While vascular endothelial growth factor receptor inhibitors (VEGFRis) have dramatically improved cancer survival, these drugs cause hypertension in a majority of patients. This side effect is often dose limiting and increases cardiovascular mortality in cancer survivors. This review summarizes recent advances in our understanding of the molecular mechanisms and clinical findings that impact management of VEGFRi-induced hypertension. RECENT FINDINGS: Recent studies define new connections between endothelial dysfunction and VEGFRi-induced hypertension, including the balance between nitric oxide, oxidative stress, endothelin signaling, and prostaglandins and the potential role of microparticles, vascular smooth muscle cells, vascular stiffness, and microvessel rarefaction. Data implicating genetic polymorphisms that might identify patients at risk for VEGFRi-induced hypertension and the growing body of literature associating VEGFRi-induced hypertension with antitumor efficacy are reviewed. These recent advances have implications for the future of cardio-oncology clinics and the management of VEGFRi-induced hypertension.
Assuntos
Hipertensão , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/efeitos adversos , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular , Transdução de SinaisRESUMO
Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Criança , Ensaios Clínicos como Assunto , Epigênese Genética , Humanos , Imunoterapia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases , Adulto JovemRESUMO
PURPOSE: The mTOR pathway has been identified as a key nutrient signaling hub that participates in metastatic progression of high-grade osteosarcoma. Inhibition of mTOR signaling is biologically achievable with sirolimus, and might slow the outgrowth of distant metastases. In this study, pet dogs with appendicular osteosarcoma were leveraged as high-value biologic models for pediatric osteosarcoma, to assess mTOR inhibition as a therapeutic strategy for attenuating metastatic disease progression. PATIENTS AND METHODS: A total of 324 pet dogs diagnosed with treatment-naïve appendicular osteosarcoma were randomized into a two-arm, multicenter, parallel superiority trial whereby dogs received amputation of the affected limb, followed by adjuvant carboplatin chemotherapy ± oral sirolimus therapy. The primary outcome measure was disease-free interval (DFI), as assessed by serial physical and radiologic detection of emergent macroscopic metastases; secondary outcomes included overall 1- and 2-year survival rates, and sirolimus pharmacokinetic variables and their correlative relationship to adverse events and clinical outcomes. RESULTS: There was no significant difference in the median DFI or overall survival between the two arms of this trial; the median DFI and survival for standard-of-care (SOC; defined as amputation and carboplatin therapy) dogs was 180 days [95% confidence interval (CI), 144-237] and 282 days (95% CI, 224-383) and for SOC + sirolimus dogs, it was 204 days (95% CI, 157-217) and 280 days (95% CI, 252-332), respectively. CONCLUSIONS: In a population of pet dogs nongenomically segmented for predicted mTOR inhibition response, sequentially administered adjuvant sirolimus, although well tolerated when added to a backbone of therapy, did not extend DFI or survival in dogs with appendicular osteosarcoma.
Assuntos
Neoplasias Ósseas/terapia , Neoplasias Ósseas/veterinária , Doenças do Cão/terapia , Osteossarcoma/terapia , Osteossarcoma/veterinária , Animais de Estimação , Sirolimo/administração & dosagem , Amputação Cirúrgica , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Carboplatina/administração & dosagem , Quimioterapia Adjuvante , Terapia Combinada/veterinária , Doenças do Cão/mortalidade , Cães , Osteossarcoma/genética , Osteossarcoma/mortalidade , Estudos Prospectivos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Resultado do TratamentoRESUMO
Despite a considerable expenditure of time and resources and significant advances in experimental models of disease, cancer research continues to suffer from extremely low success rates in translating preclinical discoveries into clinical practice. The continued failure of cancer drug development, particularly late in the course of human testing, not only impacts patient outcomes, but also drives up the cost for those therapies that do succeed. It is clear that a paradigm shift is necessary if improvements in this process are to occur. One promising direction for increasing translational success is comparative oncology-the study of cancer across species, often involving veterinary patients that develop naturally-occurring cancers. Comparative oncology leverages the power of cross-species analyses to understand the fundamental drivers of cancer protective mechanisms, as well as factors contributing to cancer initiation and progression. Clinical trials in veterinary patients with cancer provide an opportunity to evaluate novel therapeutics in a setting that recapitulates many of the key features of human cancers, including genomic aberrations that underly tumor development, response and resistance to treatment, and the presence of comorbidities that can affect outcomes. With a concerted effort from basic scientists, human physicians and veterinarians, comparative oncology has the potential to enhance the cost-effectiveness and efficiency of pipelines for cancer drug discovery and other cancer treatments.
Assuntos
Descoberta de Drogas , Neoplasias/veterinária , Animais , Humanos , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: Oclacitinib is an orally bioavailable Janus Kinase (JAK) inhibitor approved for the treatment of canine atopic dermatitis. Aberrant JAK/ Signal Transducer and Activator of Transcription (STAT) signaling within hematologic and solid tumors has been implicated as a driver of tumor growth through effects on the local microenvironment, enhancing angiogenesis, immune suppression, among others. A combination of JAK/STAT inhibition with cytotoxic chemotherapy may therefore result in synergistic anti-cancer activity, however there is concern for enhanced toxicities. The purpose of this study was to evaluate the safety profile of oclacitinib given in combination with either carboplatin or doxorubicin in tumor-bearing dogs. RESULT: Oclacitinib was administered at the label dose of 0.4-0.6 mg/kg PO q12h in combination with either carboplatin at 250-300 mg/m2 or doxorubicin at 30 mg/m2 IV q21d. Nine dogs were enrolled in this pilot study (n = 4 carboplatin; n = 5 doxorubicin). No unexpected toxicities occurred, and the incidence of adverse events with combination therapy was not increased beyond that expected in dogs treated with single agent chemotherapy. Serious adverse events included one Grade 4 thrombocytopenia and one Grade 4 neutropenia. No objective responses were noted. CONCLUSIONS: Oclacitinib is well tolerated when given in combination with carboplatin or doxorubicin. Future work is needed to explore whether efficacy is enhanced in this setting.
Assuntos
Carboplatina/uso terapêutico , Doenças do Cão/tratamento farmacológico , Doxorrubicina/uso terapêutico , Neoplasias/veterinária , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Carboplatina/administração & dosagem , Cães , Doxorrubicina/administração & dosagem , Quimioterapia Combinada , Feminino , Masculino , Neoplasias/tratamento farmacológico , Projetos Piloto , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagemRESUMO
Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.
Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Distrofina/genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Osteossarcoma/genética , Osteossarcoma/veterinária , Animais , Cães , Sequenciamento Completo do GenomaRESUMO
Advances in molecular biology have permitted a much more detailed understanding of cellular dysfunction at the molecular and genetic levels in cancer cells. This has resulted in the identification of novel targets for therapeutic intervention, including proteins that regulate signal transduction, gene expression, and protein turnover. In many instances, small molecules are used to disrupt the function of these targets, often through competitive inhibition of ATP binding or the prevention of necessary protein-protein interactions. More than 40 small molecule inhibitors are now approved to treat a variety of human cancers, substantially impacting patient outcomes.