Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616998

RESUMO

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Assuntos
Lipídeos , Nanopartículas , Animais , Difosfonatos/farmacologia , Lipossomos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
3.
J Vis Exp ; (181)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35404356

RESUMO

Mitochondria host the machinery for the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), which generate adenosine triphosphate (ATP) to maintain energy homeostasis. Glucose, fatty acids, and amino acids are the major energy substrates fueling mitochondrial respiration in most somatic cells. Evidence shows that different cell types may have a distinct preference for certain substrates. However, substrate utilization by various cells in the skeleton has not been studied in detail. Moreover, as cellular metabolism is attuned to physiological and pathophysiological changes, direct assessments of substrate dependence in skeletal cells may provide important insights into the pathogenesis of bone diseases. The following protocol is based on the principle of carbon dioxide release from substrate molecules following oxidative phosphorylation. By using substrates containing radioactively labeled carbon atoms (14C), the method provides a sensitive and easy-to-use assay for the rate of substrate oxidation in cell culture. A case study with primary calvarial preosteoblasts versus bone marrow-derived macrophages (BMMs) demonstrates different utilization of the main substrates between the two cell types.


Assuntos
Ciclo do Ácido Cítrico , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Ácidos Graxos/metabolismo , Oxirredução
4.
Cell Rep ; 36(7): 109542, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407400

RESUMO

Teriparatide is the most widely prescribed bone anabolic drug in the world, but its cellular targets remain incompletely defined. The Gli1+ metaphyseal mesenchymal progenitors (MMPs) are a main source for osteoblasts in postnatal growing mice, but their potential response to teriparatide is unknown. Here, by lineage tracing, we show that teriparatide stimulates both proliferation and osteoblast differentiation of MMPs. Single-cell RNA sequencing reveals heterogeneity among MMPs, including an unexpected chondrocyte-like osteoprogenitor (COP). COP expresses the highest level of Hedgehog (Hh) target genes and the insulin-like growth factor 1 receptor (Igf1r) among all cell clusters. COP also expresses Pth1r and further upregulates Igf1r upon teriparatide treatment. Inhibition of Hh signaling or deletion of Igf1r from MMPs diminishes the proliferative and osteogenic effects of teriparatide. The study therefore identifies COP as a teriparatide target wherein Hh and insulin-like growth factor (Igf) signaling are critical for the osteoanabolic response in growing mice.


Assuntos
Osso e Ossos/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo , Células-Tronco/metabolismo , Teriparatida/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
5.
FASEB J ; 35(7): e21683, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118078

RESUMO

Glucocorticoids, widely prescribed for anti-inflammatory and immunosuppressive purposes, are the most common secondary cause for osteoporosis and related fractures. Current anti-resorptive and anabolic therapies are insufficient for treating glucocorticoid-induced osteoporosis due to contraindications or concerns of side effects. Glucocorticoids have been shown to disrupt Wnt signaling in osteoblast-lineage cells, but the efficacy for Wnt proteins to restore bone mass after glucocorticoid therapy has not been examined. Here by using two mouse genetic models wherein WNT7B expression is temporally activated by either tamoxifen or doxycycline in osteoblast-lineage cells, we show that WNT7B recovers bone mass following glucocorticoid-induced bone loss, thanks to increased osteoblast number and function. However, WNT7B overexpression in bone either before or after glucocorticoid treatments does not ameliorate the abnormal accumulation of body fat. The study demonstrates a potent bone anabolic function for WNT7B in countering glucocorticoid-induced bone loss.


Assuntos
Densidade Óssea , Glucocorticoides/toxicidade , Osteogênese , Osteoporose/prevenção & controle , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Animais , Masculino , Camundongos , Osteoporose/induzido quimicamente , Osteoporose/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética
6.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085927

RESUMO

Meniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using a Gli1 reporter line, we found that Gli1+ cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1+ cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers. In culture, meniscal Gli1+ cells possessed high progenitor activities under the control of Hh signal. Meniscus injury at the anterior horn induced a quick expansion of Gli1-lineage cells. Normally, meniscal tissue healed slowly, leading to cartilage degeneration. Ablation of Gli1+ cells further hindered this repair process. Strikingly, intra-articular injection of Gli1+ meniscal cells or an Hh agonist right after injury accelerated the bridging of the interrupted ends and attenuated signs of osteoarthritis. Taken together, our work identified a novel progenitor population in meniscus and proposes a new treatment for repairing injured meniscus and preventing osteoarthritis.


Assuntos
Proteínas Hedgehog/metabolismo , Meniscos Tibiais/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteoartrite do Joelho/prevenção & controle , Lesões do Menisco Tibial/cirurgia , Cicatrização , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Masculino , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Camundongos Knockout , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Transdução de Sinais , Suínos , Porco Miniatura , Lesões do Menisco Tibial/genética , Lesões do Menisco Tibial/metabolismo , Lesões do Menisco Tibial/patologia , Fatores de Tempo , Proteína GLI1 em Dedos de Zinco/genética
7.
Cell Rep ; 32(10): 108108, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905773

RESUMO

The metabolic program of osteoblasts, the chief bone-making cells, remains incompletely understood. Here in murine calvarial cells, we establish that osteoblast differentiation under aerobic conditions is coupled with a marked increase in glucose consumption and lactate production but reduced oxygen consumption. As a result, aerobic glycolysis accounts for approximately 80% of the ATP production in mature osteoblasts. In vivo tracing with 13C-labeled glucose in the mouse shows that glucose in bone is readily metabolized to lactate but not organic acids in the TCA cycle. Glucose tracing in osteoblast cultures reveals that pyruvate is carboxylated to form malate integral to the malate-aspartate shuttle. RNA sequencing (RNA-seq) identifies Me2, encoding the mitochondrial NAD-dependent isoform of malic enzyme, as being specifically upregulated during osteoblast differentiation. Knockdown of Me2 markedly reduces the glycolytic flux and impairs osteoblast proliferation and differentiation. Thus, the mitochondrial malic enzyme functionally couples the mitochondria with aerobic glycolysis in osteoblasts.


Assuntos
Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Efeito Warburg em Oncologia , Animais , Humanos , Malatos , Camundongos
8.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286228

RESUMO

Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly understood. Here, by employing large scale single cell transcriptome analysis, we computationally defined mesenchymal progenitors at different stages and delineated their bi-lineage differentiation paths in young, adult and aging mice. One identified subpopulation is a unique cell type that expresses adipocyte markers but contains no lipid droplets. As non-proliferative precursors for adipocytes, they exist abundantly as pericytes and stromal cells that form a ubiquitous 3D network inside the marrow cavity. Functionally they play critical roles in maintaining marrow vasculature and suppressing bone formation. Therefore, we name them marrow adipogenic lineage precursors (MALPs) and conclude that they are a newly identified component of marrow adipose tissue.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Animais , Genômica/métodos , Camundongos , Transcriptoma
9.
FASEB J ; 33(7): 7810-7821, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30913395

RESUMO

Wingless/integrated (Wnt) signaling has emerged as a major mechanism for promoting bone formation and a target pathway for developing bone anabolic agents against osteoporosis. However, the downstream events mediating the potential therapeutic effect of Wnt proteins are not fully understood. Previous studies have indicated that increased glycolysis is associated with osteoblast differentiation in response to Wnt signaling, but direct genetic evidence for the importance of glucose metabolism in Wnt-induced bone formation is lacking. Here, we have generated compound transgenic mice to overexpress Wnt family member 7B (Wnt7b) transiently in the osteoblast lineage of postnatal mice, with or without concurrent deletion of the glucose transporter 1 (Glut1), also known as solute carrier family 2, facilitated glucose transporter member 1. Overexpression of Wnt7b in 1-mo-old mice for 1 wk markedly stimulated bone formation, but the effect was essentially abolished without Glut1, even though transient deletion of Glut1 itself did not affect normal bone accrual. Consistent with the in vivo results, Wnt7b increased Glut1 expression and glucose consumption in the primary culture of osteoblast lineage cells, and deletion of Glut1 diminished osteoblast differentiation in vitro. Thus, Wnt7b promotes bone formation in part through stimulating glucose metabolism in osteoblast lineage cells.-Chen, H., Ji, X., Lee, W.-C., Shi, Y., Li, B., Abel, E. D., Jiang, D., Huang, W., Long, F. Increased glycolysis mediates Wnt7b-induced bone formation.


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Glicólise , Osteoblastos/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Animais , Linhagem da Célula , Células Cultivadas , Fêmur/crescimento & desenvolvimento , Fêmur/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Camundongos , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia , Tíbia/crescimento & desenvolvimento , Tíbia/ultraestrutura , Proteínas Wnt/genética
10.
J Clin Invest ; 128(12): 5573-5586, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284985

RESUMO

Notch signaling critically controls cell fate decisions in mammals, both during embryogenesis and in adults. In the skeleton, Notch suppresses osteoblast differentiation and sustains bone marrow mesenchymal progenitors during postnatal life. Stabilizing mutations of Notch2 cause Hajdu-Cheney syndrome, which is characterized by early-onset osteoporosis in humans, but the mechanism whereby Notch inhibits bone accretion is not fully understood. Here, we report that activation of Notch signaling by either Jagged1 or the Notch2 intracellular domain suppresses glucose metabolism and osteoblast differentiation in primary cultures of bone marrow mesenchymal progenitors. Importantly, deletion of Notch2 in the limb mesenchyme increases both glycolysis and bone formation in the long bones of postnatal mice, whereas pharmacological reduction of glycolysis abrogates excessive bone formation. Mechanistically, Notch reduces the expression of glycolytic and mitochondrial complex I genes, resulting in a decrease in mitochondrial respiration, superoxide production, and AMPK activity. Forced activation of AMPK restores glycolysis in the face of Notch signaling. Thus, suppression of glucose metabolism contributes to the mechanism, whereby Notch restricts osteoblastogenesis from bone marrow mesenchymal progenitors.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glucose/genética , Glicólise/genética , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Síndrome de Hajdu-Cheney/patologia , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio/genética , Receptor Notch2/genética
11.
Mucosal Immunol ; 11(5): 1306-1315, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29867080

RESUMO

Sonic hedgehog (SHH) is abundantly expressed and critical for morphogenesis in embryonic lungs; however, SHH expression drops to a much lower level in mice from E17.5 and in humans from the 21st gestational week. We find that SHH expression is robustly upregulated in the airway epithelia of children with asthma or mouse models with allergic airway disease. Specifically, airway-specific SMO loss of function significantly suppresses allergen-induced goblet cell phenotypes, whereas an airway-specific SMO gain of function markedly enhances the goblet cell phenotypes in mouse models with allergic airway disease. Notably, intratracheal administration with SHH-neutralizing antibody or cyclopamine robustly attenuates goblet cell phenotypes in mouse models with allergic airway disease. Finally, we identify that Muc5AC gene encoding MUC5AC mucin serves as a direct target of GLI transcriptional factors in response to SHH, whereas the SAM-pointed domain-containing ETS transcription factor and Forkhead box A2, critical transcriptional factors for goblet cell phenotypes, both function as the effectors of GLIs in response to SHH stimulation. Together, the upregulation of SHH expression in allergic bronchial epithelia contributes to goblet cell metaplasia; thus, blockage of SHH signaling is a rational approach in a therapeutic intervention of epithelial remodeling in chronic airway diseases.


Assuntos
Expressão Gênica/genética , Células Caliciformes/patologia , Proteínas Hedgehog/genética , Hipersensibilidade/genética , Metaplasia/genética , Animais , Anticorpos Neutralizantes/imunologia , Asma/genética , Asma/imunologia , Asma/patologia , Criança , Pré-Escolar , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Células Caliciformes/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Masculino , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Fatores de Transcrição/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
12.
Nat Commun ; 8(1): 2043, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230039

RESUMO

Bone formation in mammals requires continuous production of osteoblasts throughout life. A common molecular marker for all osteogenic mesenchymal progenitors has not been identified. Here, by lineage-tracing experiments in fetal or postnatal mice, we discover that Gli1+ cells progressively produce osteoblasts in all skeletal sites. Most notably, in postnatal growing mice, the Gli1+ cells residing immediately beneath the growth plate, termed here "metaphyseal mesenchymal progenitors" (MMPs), are essential for cancellous bone formation. Besides osteoblasts, MMPs also give rise to bone marrow adipocytes and stromal cells in vivo. RNA-seq reveals that MMPs express a number of marker genes previously assigned to mesenchymal stem/progenitor cells, including CD146/Mcam, CD44, CD106/Vcam1, Pdgfra, and Lepr. Genetic disruption of Hh signaling impairs proliferation and osteoblast differentiation of MMPs. Removal of ß-catenin causes MMPs to favor adipogenesis, resulting in osteopenia coupled with increased marrow adiposity. Finally, postnatal Gli1+ cells contribute to both chondrocytes and osteoblasts during bone fracture healing. Thus Gli1 marks mesenchymal progenitors responsible for both normal bone formation and fracture repair.


Assuntos
Fraturas Ósseas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteína GLI1 em Dedos de Zinco/metabolismo , Adipogenia , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Consolidação da Fratura , Fraturas Ósseas/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , beta Catenina/genética , beta Catenina/metabolismo
13.
Bone Res ; 5: 16049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163952

RESUMO

Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmp1-Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmp1 gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmp1-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmp1-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmp1-Cre in the gastrointestinal mesenchyme, deletion of Bmpr1a with Dmp1-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmp1-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types.

14.
Mol Cell Biol ; 37(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920253

RESUMO

The bone morphogenetic protein (Bmp) family of secreted molecules has been extensively studied in the context of osteoblast differentiation. However, the intracellular signaling cascades that mediate the osteoblastogenic function of Bmp have not been fully elucidated. By profiling mRNA expression in the bone marrow mesenchymal progenitor cell line ST2, we discover that BMP2 induces not only genes commonly associated with ossification and mineralization but also genes important for general protein synthesis. We define the two groups of genes as mineralization related versus protein anabolism signatures of osteoblasts. Although it induces the expression of several Wnt genes, BMP2 activates the osteogenic program largely independently of de novo Wnt secretion. Remarkably, although Smad4 is necessary for the activation of the mineralization-related genes, it is dispensable for BMP2 to induce the protein anabolism signature, which instead critically depends on the transcription factor Atf4. Upstream of Atf4, BMP2 activates mTORC1 to stimulate protein synthesis, resulting in an endoplasmic reticulum stress response mediated by Perk. Thus, Bmp signaling induces osteoblast differentiation through both Smad4- and mTORC1-dependent mechanisms.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Osteoblastos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/metabolismo , Serina-Treonina Quinases TOR , Proteínas Wnt/metabolismo , eIF-2 Quinase/metabolismo
15.
J Cell Biochem ; 118(4): 748-753, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27606668

RESUMO

mTORC1 signaling has been shown to promote limb skeletal growth through stimulation of protein synthesis in chondrocytes. However, potential roles of mTORC1 in prechondrogenic mesenchyme have not been explored. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in prechondrogenic limb mesenchymal cells. Deletion of Raptor reduced the size of limb bud cells, resulting in overall diminution of the limb bud without affecting skeletal patterning. We then examined the potential role of mTORC1 in chondrogenic differentiation in vitro. Both pharmacological and genetic disruption of mTORC1 significantly suppressed the number and size of cartilage nodules in micromass cultures of limb bud mesenchymal cells. Similarly, inhibition of mTORC1 signaling in chondrogenic ATDC5 cells greatly impaired cartilage nodule formation, and decreased the expression of the master transcriptional factor Sox9, along with the cartilage matrix genes Acan and Col2a1. Thus, we have identified an important role for mTORC1 signaling in promoting limb mesenchymal cell growth and chondrogenesis during embryonic development. J. Cell. Biochem. 118: 748-753, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Condrogênese/fisiologia , Botões de Extremidades/embriologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Botões de Extremidades/citologia , Botões de Extremidades/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Gravidez , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/deficiência , Serina-Treonina Quinases TOR/genética
16.
Development ; 143(10): 1811-22, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27052727

RESUMO

Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.


Assuntos
Desenvolvimento Ósseo , Linhagem da Célula , Condrócitos/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Osteócitos/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Integrases/metabolismo , Camundongos Knockout , Modelos Biológicos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp7 , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
17.
Cell Rep ; 14(1): 82-92, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26725121

RESUMO

More than 85% of advanced breast cancer patients suffer from metastatic bone lesions, yet the mechanisms that facilitate these metastases remain poorly understood. Recent studies suggest that tumor-derived factors initiate changes within the tumor microenvironment to facilitate metastasis. However, whether stromal-initiated changes are sufficient to drive increased metastasis in the bone remains an open question. Thus, we developed a model to induce reactive senescent osteoblasts and found that they increased breast cancer colonization of the bone. Analysis of senescent osteoblasts revealed that they failed to mineralize bone matrix and increased local osteoclastogenesis, the latter process being driven by the senescence-associated secretory phenotype factor, IL-6. Neutralization of IL-6 was sufficient to limit senescence-induced osteoclastogenesis and tumor cell localization to bone, thereby reducing tumor burden. Together, these data suggest that a reactive stromal compartment can condition the niche, in the absence of tumor-derived signals, to facilitate metastatic tumor growth in the bone.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Osteoblastos/metabolismo , Microambiente Tumoral , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Senescência Celular/genética , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoblastos/patologia
18.
Bone ; 85: 1-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780446

RESUMO

Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictor(f/f), hereafter RiCKO) were subjected to Scl-Ab treatment for 5weeks starting at 4months of age. In vivo micro-computed tomography (µCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-ß-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption.


Assuntos
Anticorpos/uso terapêutico , Osso e Ossos/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Animais , Anticorpos/farmacologia , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Feminino , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Microtomografia por Raio-X
19.
Genetics ; 202(3): 1055-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26739452

RESUMO

Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-ß1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-ß/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese/genética , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteogênese , Fatores de Transcrição SOX9/fisiologia , Ativação Transcricional , Fator de Crescimento Transformador beta/farmacologia , Proteína cdc42 de Ligação ao GTP/genética
20.
PLoS One ; 10(6): e0130627, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090674

RESUMO

Preosteoblasts are precursor cells that are committed to the osteoblast lineage. Differentiation of these cells to mature osteoblasts is regulated by the extracellular factors and environmental cues. Recent studies have implicated mTOR signaling in the regulation of osteoblast differentiation. However, mTOR exists in two distinct protein complexes (mTORC1 and mTORC2), and the specific role of mTORC1 in regulating the progression of preosteoblasts to mature osteoblastis still unclear. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in primary calvarial cells. Deletion of Raptor resulted in loss of mTORC1 but an increase in mTORC2 signaling without overtly affecting autophagy. Under the osteogenic culture condition, Raptor-deficient cells exhibited a decrease in matrix synthesis and mineralization. qPCR analyses revealed that deletion of Raptor reduced the expression of late-stage markers for osteoblast differentiation (Bglap, Ibsp, and Col1a), while slightly increasing early osteoblast markers (Runx2, Sp7, and Alpl). Consistent with the findings in vitro, genetic ablation of Raptor in osterix-expressing cells led to osteopenia in mice. Together, our findings have identified a specific role for mTORC1 in the transition from preosteoblasts to mature osteoblasts.


Assuntos
Diferenciação Celular , Complexos Multiproteicos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Calcificação Fisiológica/genética , Matriz Extracelular/metabolismo , Deleção de Genes , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Radiografia , Proteína Regulatória Associada a mTOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA