Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 928774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910615

RESUMO

Monoclonal antibody drugs targeting the PD-1/PD-L1 pathway have showed efficacy in the treatment of cancer patients, however, they have many intrinsic limitations and inevitable drawbacks. Peptide inhibitors as alternatives might compensate for the drawbacks of current PD-1/PD-L1 interaction blockers. Identifying PD-L1 binding peptides by random peptide library screening is a time-consuming and labor-intensive process. Machine learning-based computational models enable rapid discovery of peptide candidates targeting the PD-1/PD-L1 pathway. In this study, we first employed next-generation phage display (NGPD) biopanning to isolate PD-L1 binding peptides. Different peptide descriptors and feature selection methods as well as diverse machine learning methods were then incorporated to implement predictive models of PD-L1 binding. Finally, we proposed PDL1Binder, an ensemble computational model for efficiently obtaining PD-L1 binding peptides. Our results suggest that predictive models of PD-L1 binding can be learned from deep sequencing data and provide a new path to discover PD-L1 binding peptides. A web server was implemented for PDL1Binder, which is freely available at http://i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl.

2.
Sci Data ; 9(1): 294, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697698

RESUMO

Since 2019, the novel coronavirus (SARS-COV-2) disease (COVID-19) has caused a worldwide epidemic. Anti-coronavirus peptides (ACovPs), a type of antimicrobial peptides (AMPs), have demonstrated excellent inhibitory effects on coronaviruses. However, state-of-the-art AMP databases contain only a small number of ACovPs. Additionally, the fields of these databases are not uniform, and the units or evaluation standards of the same field are inconsistent. Most of these databases have not included the target domains of ACovPs and description of in vitro and in vivo assays to measure the inhibitory effects of ACovPs. Here, we present a database focused on ACovPs (ACovPepDB), which contains comprehensive and precise ACovPs information of 518 entries with 214 unique ACovPs manually collected from public databases and published peer-reviewed articles. We believe that ACovPepDB is of great significance for facilitating the development of new peptides and improving treatment for coronavirus infection. The database will become a portal for ACovPs and guide and help researchers perform further studies. The ACovPepDB is available at http://i.uestc.edu.cn/ACovPepDB/ .


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Bases de Dados de Compostos Químicos , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA