Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Obes Rev ; 25(7): e13744, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38572616

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. This systematic review, meta-analysis, and meta-regression aims to compare the effect of insulin sensitizer pharmacotherapy on metabolic and reproductive outcomes in women with PCOS and overweight or obesity. We searched online databases MEDLINE via OVID, EMBASE, Clinicaltrials.gov, and EudraCT for trials published from inception to November 13, 2023. Inclusion criteria were double-blind, randomized controlled trials in women diagnosed with PCOS, body mass index (BMI) ≥ 25 kg/m2, which reported metabolic or reproductive outcomes. The intervention was insulin sensitization pharmacotherapy versus placebo or other agents. The primary outcomes were changes from baseline BMI, fasting blood glucose, and menstrual frequency. Nineteen studies were included in this review. Metformin had the most significant effect on the fasting plasma glucose and body mass index. Insulin sensitizer pharmacotherapy significantly reduced fasting plasma glucose, body mass index, fasting serum insulin, HOMA-IR, sex hormone binding globulin, and total testosterone, but the effect size was small. There was a lack of menstrual frequency and live birth data. The results indicate a role for insulin sensitizers in improving the metabolic and, to a lesser degree, reproductive profile in these women. Further research should examine insulin sensitizers' effects on objective measures of fecundity.


Assuntos
Resistência à Insulina , Obesidade , Sobrepeso , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/complicações , Feminino , Obesidade/complicações , Obesidade/tratamento farmacológico , Sobrepeso/complicações , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Índice de Massa Corporal , Fertilidade/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Front Cell Infect Microbiol ; 14: 1275940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352056

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the development of lung infections caused by antimicrobial resistant bacteria is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli, Staphylococcus aureus, and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced inflammation associated body mass loss. Wild-type mice treated with PD0325901 had significant reduction in neutrophil-mediated inflammation compared to vehicle treatment groups, with preserved clearance of bacteria in lung, liver, or spleen 1 day after infection in either wild-type or CF mouse models. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells and demonstrates that MEK1/2 inhibitors diminish pro-inflammatory responses without impairing host defense mechanisms required for acute pathogen clearance.


Assuntos
Benzamidas , Fibrose Cística , Difenilamina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Escherichia coli , Macrófagos , Inflamação/complicações , Gravidade do Paciente , Mamíferos
3.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36712028

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the acquisition of antibiotic resistance bacterial infections is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli , Staphylococcus aureus , and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced infection related weight loss compared to vehicle treatment groups but did not impair clearance of bacteria in lung, liver, or spleen 1 day after infection. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells, and demonstrates that MEK1/2 inhibitors dampen pro-inflammatory responses without impairing host defense mechanisms mediating pathogen clearance.

4.
Med ; 3(11): 774-791.e7, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195086

RESUMO

BACKGROUND: Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS: Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS: metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS: We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING: This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.


Assuntos
Neoplasias Renais , Criança , Humanos , Pré-Escolar , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Renais/tratamento farmacológico , Proteína Exportina 1
5.
Mol Cancer Ther ; 20(11): 2189-2197, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482287

RESUMO

Limited clinical data are available regarding the utility of multikinase inhibition in neuroblastoma. Repotrectinib (TPX-0005) is a multikinase inhibitor that targets ALK, TRK, JAK2/STAT, and Src/FAK, which have all been implicated in the pathogenesis of neuroblastoma. We evaluated the preclinical activity of repotrectinib monotherapy and in combination with chemotherapy as a potential therapeutic approach for relapsed/refractory neuroblastoma. In vitro sensitivity to repotrectinib, ensartinib, and cytotoxic chemotherapy was evaluated in neuroblastoma cell lines. In vivo antitumor effect of repotrectinib monotherapy, and in combination with chemotherapy, was evaluated using a genotypically diverse cohort of patient-derived xenograft (PDX) models of neuroblastoma. Repotrectinib had comparable cytotoxic activity across cell lines irrespective of ALK mutational status. Combination with chemotherapy demonstrated increased antiproliferative activity across several cell lines. Repotrectinib monotherapy had notable antitumor activity and prolonged event-free survival compared with vehicle and ensartinib in PDX models (P < 0.05). Repotrectinib plus chemotherapy was superior to chemotherapy alone in ALK-mutant and ALK wild-type PDX models. These results demonstrate that repotrectinib has antitumor activity in genotypically diverse neuroblastoma models, and that combination of a multikinase inhibitor with chemotherapy may be a promising treatment paradigm for translation to the clinic.


Assuntos
Compostos Macrocíclicos/uso terapêutico , Neuroblastoma/tratamento farmacológico , Pirazóis/uso terapêutico , Animais , Humanos , Compostos Macrocíclicos/farmacologia , Camundongos , Neuroblastoma/patologia , Pirazóis/farmacologia
6.
Front Pharmacol ; 11: 1219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013356

RESUMO

BACKGROUND: CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular targets for focused therapies. This therapeutic approach, however, requires a more detailed knowledge of CF monocyte cellular programming and phenotypes. MATERIAL AND METHODS: In order to characterize the inflammatory phenotype of CF monocytes, and how these cells change after initiation of CFTR modulator therapy, we studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based analyses. Plasma concentrations of cytokines and chemokines were evaluated by multiplex ELISA. RESULTS: RNAseq identified approximately 50 monocyte genes for which basal expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of these, the majority were increased in expression post ivacaftor, including many genes traditionally associated with enhanced inflammation and immune responses. Pathway analyses confirmed that transcriptional programs were overwhelmingly up-regulated in monocytes after 7 days of ivacaftor, including biological modules associated with immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response. Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by monocytes and macrophages, and CCL2, a monocyte chemokine. CONCLUSIONS: Our results demonstrate that ivacaftor causes acute changes in blood monocyte transcriptional profiles and plasma chemokines, and suggest that increased monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to changes in airway inflammation in people taking CFTR modulators. To our knowledge, this is the first report investigating the transcriptomic response of circulating blood monocytes in CF subjects treated with a CFTR modulator.

7.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337217

RESUMO

This study demonstrates that initiation of the CFTR modulator ivacaftor in people with cystic fibrosis and susceptible CFTR mutations causes an acute reduction in blood monocyte sensitivity to the key proinflammatory cytokine IFN-γ http://bit.ly/2TeI6LG.

9.
J Allergy Clin Immunol ; 143(4): 1536-1548, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30445062

RESUMO

BACKGROUND: Macrophage plasticity allows cells to adopt different phenotypes, a property with important implications in disorders such as cystic fibrosis (CF) and asthma. OBJECTIVE: We sought to examine the transcriptional and functional significance of macrophage repolarization from an M1 to an M2 phenotype and assess the role of a common human genetic disorder (CF) and a prototypical allergic disease (asthma) in this transformation. METHODS: Monocyte-derived macrophages were collected from healthy subjects and patients with CF and polarized to an M2 state by using IL-4, IL-10, glucocorticoids, apoptotic PMNs, or azithromycin. We performed transcriptional profiling and pathway analysis for each stimulus. We assessed the ability of M2-repolarized macrophages to respond to LPS rechallenge and clear apoptotic neutrophils and used murine models to determine conserved functional responses to IL-4 and IL-10. We investigated whether M2 signatures were associated with alveolar macrophage phenotypes in asthmatic patients. RESULTS: We found that macrophages exhibit highly diverse responses to distinct M2-polarizing stimuli. Specifically, IL-10 activated proinflammatory pathways and abrogated LPS tolerance, allowing rapid restoration of LPS responsiveness. In contrast, IL-4 enhanced LPS tolerance, dampening proinflammatory responses after repeat LPS challenge. A common theme observed across all M2 stimuli was suppression of interferon-associated pathways. We found that CF macrophages had intact reparative and transcriptional responses, suggesting that macrophage contributions to CF-related lung disease are primarily shaped by their environment. Finally, we leveraged in vitro-derived signatures to show that allergen provocation induces distinct M2 state transcriptional patterns in alveolar macrophages. CONCLUSION: Our findings highlight the diversity of macrophage polarization, attribute functional consequences to different M2 stimuli, and provide a framework to phenotype macrophages in disease states.


Assuntos
Asma/imunologia , Fibrose Cística/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Adulto , Animais , Citocinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Transcrição Gênica , Transcriptoma
10.
Innate Immun ; 24(6): 357-365, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068264

RESUMO

Matrix metalloproteinases (MMPs) are transcriptionally regulated proteases that have multiple roles in modifying the extracellular matrix (ECM) and inflammatory response. Our previous work identified Mmp28 as a key regulator of inflammation and macrophage polarization during experimental models of pulmonary infection, fibrosis, and chronic smoke exposure. However, the signaling pathways responsible for regulation of macrophage Mmp28 expression remain undefined. This study utilized murine macrophages obtained from wild type, Tlr2-/-, Tlr4-/-, MyD88-/-, Ticam1 Lps2 ( Trifmutant), and Ifnar1-/- mice to test the hypothesis that macrophage Mmp28 expression was dependent on TRIF and type I IFN. Our results support the hypothesis, demonstrating that increased macrophage Mmp28 expression was dependent on type I IFN after LPS and poly(I:C) stimulation. To gain further insight into the function of MMP28, we explored the inflammatory response of macrophages derived from wild type or Mmp28-/- mice to stimulation with poly(I:C). Our data support a role for MMP28 in regulating the macrophage inflammatory response to poly(I:C) because expression of Ccl2, Ccl4, Cxcl10, and Il6 were increased in Mmp28-/- macrophages. Together, these data support a model in which macrophages integrate TRIF- and type I IFN-dependent signaling to coordinate regulation of proteins with the capacity to modify the ECM.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Matriz Extracelular/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Metaloproteinases da Matriz Secretadas/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Metaloproteinases da Matriz Secretadas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/imunologia , Transdução de Sinais
11.
Biotechnol Bioeng ; 115(9): 2328-2340, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940066

RESUMO

Recent progress in metabolic engineering and synthetic biology enables the use of microorganisms for the production of chemicals-"bio-based chemicals." However, it is still unclear which chemicals have the highest economic prospect. To this end, we develop a framework for the identification of such promising ones. Specifically, we first develop a genome-scale constraint-based metabolic modeling approach, which is used to identify a candidate pool of 209 chemicals (together with the estimated yield, productivity, and residence time for each) from the intersection of the high-production-volume chemicals and the KEGG and MetaCyc databases. Second, we design three screening criteria based on a chemical's profit margin, market volume, and market size. The total process cost, including the downstream separation cost, is systematically incorporated into the evaluation. Third, given the three aforementioned criteria, we identify 32 products as economically promising if the maximum yields can be achieved, and 22 products if the maximum productivities can be achieved. The breakeven titer that renders zero profit margin for each product is also presented. Comparisons between extracellular and intracellular production, as well as Escherichia coli and Saccharomyces cerevisiae systems are also discussed. The proposed framework provides important guidance for future studies in the production of bio-based chemicals. It is also flexible in that the databases, yield estimations, and criteria can be modified to customize the screening.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Produtos Biológicos/economia , Biotecnologia/economia , Biologia Computacional/métodos , Custos e Análise de Custo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica/economia , Redes e Vias Metabólicas/genética , Metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
12.
Am J Pathol ; 187(6): 1288-1300, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28399390

RESUMO

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis. MMP-28 is expressed by the pulmonary epithelium and macrophage, and we have found that it regulates macrophage recruitment and polarization. We hypothesized that MMP-28 has contributory roles in emphysema via alteration of macrophage numbers and activation. Because of the established association of emphysema pathogenesis to macrophage influx, we evaluated the inflammatory changes and lung histology of Mmp28-/- mice exposed to 3 and 6 months of cigarette smoke. At earlier time points, we found altered macrophage polarization in the smoke-exposed Mmp28-/- lung consistent with other published findings that MMP-28 regulates macrophage activation. At both 3 and 6 months, Mmp28-/- mice had blunted inflammatory responses more closely resembling nonsmoked mice, with a reduction in neutrophil recruitment and CXCL1 chemokine expression. By 6 months, Mmp28-/- mice were protected from emphysema. These results highlight a previously unrecognized role for MMP-28 in promoting chronic lung inflammation and tissue remodeling induced by cigarette smoke and highlight another potential target to modulate COPD.


Assuntos
Metaloproteinases da Matriz Secretadas/fisiologia , Enfisema Pulmonar/enzimologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/fisiologia , Pulmão/enzimologia , Macrófagos Alveolares/enzimologia , Masculino , Metaloproteinases da Matriz Secretadas/deficiência , Metaloproteinases da Matriz Secretadas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/fisiologia , Pneumonia/enzimologia , Pneumonia/etiologia , Pneumonia/genética , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Poluição por Fumaça de Tabaco/efeitos adversos
13.
J Immunol ; 198(2): 862-872, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28003382

RESUMO

Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological inhibition of the MEK1/2 pathway by a MEK1/2 inhibitor (MEKi) significantly increased expression of IL-4/IL-13 (M2)-responsive genes in murine bone marrow-derived and alveolar macrophages. Deletion of the MEK1 gene using LysMCre+/+Mek1fl/fl macrophages as an alternate approach yielded similar results. MEKi enhanced STAT6 phosphorylation, and MEKi-induced changes in M2 polarization were dependent on STAT6. In addition, MEKi treatment significantly increased murine and human macrophage efferocytosis of apoptotic cells, independent of macrophage polarization and STAT6. These phenotypes were associated with increased gene and protein expression of Mertk, Tyro3, and Abca1, three proteins that promote macrophage efferocytosis. We also studied the effects of MEKi on in vivo macrophage efferocytosis and polarization. MEKi-treated mice had increased efferocytosis of apoptotic polymorphonuclear leukocytes instilled into the peritoneum. Furthermore, administration of MEKi after LPS-induced lung injury led to improved recovery of weight, fewer neutrophils in the alveolar compartment, and greater macrophage M2 polarization. Collectively, these results show that MEK1/2 inhibition is capable of promoting the reparative properties of murine and human macrophages. These studies suggest that the MEK1/2 pathway may be a therapeutic target to promote the resolution of inflammation via modulation of macrophage functions.


Assuntos
MAP Quinase Quinase 1/imunologia , MAP Quinase Quinase 2/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Macrófagos/enzimologia , Camundongos , Reação em Cadeia da Polimerase
14.
Mol Ther ; 24(4): 779-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732878

RESUMO

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-ß phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Neointima/metabolismo , Fosforilação , Ratos
15.
PLoS One ; 9(10): e109525, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295729

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5'-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12-18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18-24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.


Assuntos
Regulação para Baixo , Francisella tularensis/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , Adulto , Vacinas Bacterianas , Regulação para Baixo/efeitos dos fármacos , Francisella tularensis/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inositol Polifosfato 5-Fosfatases , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/biossíntese , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Mol Ther ; 22(11): 1910-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954476

RESUMO

Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA). Treatment of PC cells with A9g results in reduced cell migration/invasion in culture and metastatic disease in vivo. Importantly, A9g is safe in vivo and is not immunogenic in human cells. Pharmacokinetic and biodistribution studies in mice confirm target specificity and absence of non-specific on/off-target effects. In conclusion, these studies provide new and important insights into the role of PSMA in driving carcinogenesis and demonstrate critical endpoints for the translation of a novel RNA smart drug for advanced stage PC.


Assuntos
Antígenos de Superfície/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Glutamato Carboxipeptidase II/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Animais , Aptâmeros de Nucleotídeos/farmacocinética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Infect Immun ; 81(8): 2800-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716606

RESUMO

The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression. Recent data demonstrated that the small alarmone ppGpp, produced by RelA and SpoT, is important for stabilizing MglA/SspA and FevR (PigR) interactions in Francisella. Production of ppGpp is commonly known to be activated by cellular and nutritional stress in bacteria, which indicates that cellular and nutritional stresses act as important signals for FPI activation. In this work, we demonstrate that mutations in migR, trmE, or cphA significantly reduce ppGpp accumulation. The reduction in ppGpp levels was similar for each of the mutants and correlated with a corresponding reduction in iglA reporter expression. In addition, we observed that there were differences in the ability of each of these mutants to replicate within various mammalian cells, indicating that the migR, trmE, and cphA genes are likely parts of different cellular stress response pathways in Francisella. These results also indicate that different nutritional and cellular stresses exist in different mammalian cells. This work provides new information to help understand how Francisella regulates its virulence genes in response to host cell environments, and it contributes to our growing knowledge of this highly successful bacterial pathogen.


Assuntos
Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Pirofosfatases/biossíntese , Tularemia/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Feminino , Imunofluorescência , Francisella tularensis/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Fisiológico/fisiologia , Tularemia/metabolismo , Virulência/genética
19.
Infect Immun ; 81(3): 850-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275090

RESUMO

Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp. tularensis strain Schu S4 mutants that lack functional iglI, iglJ, or pdpC, three genes of the Francisella pathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. The iglI and iglJ mutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, the pdpC mutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed by trans complementation. In vivo virulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 10(8) CFU iglJ- or pdpC-deficient bacteria. Nevertheless, the pdpC mutant disseminated to the liver and spleen before being eliminated, whereas the iglJ mutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential for F. tularensis Schu S4 virulence and further suggest that pdpC may play a unique role in this process, as indicated by its distinct intermediate phenotype.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Macrófagos/microbiologia , Tularemia/microbiologia , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tularemia/patologia , Virulência
20.
J Leukoc Biol ; 92(4): 869-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822009

RESUMO

Flavocytochrome b(558), the catalytic core of the phagocyte NADPH oxidase (NOX2), mediates electron transfer from NADPH to molecular oxygen to generate superoxide, the precursor of highly ROS for host defense. Flavocytochrome b(558) is an integral membrane heterodimer consisting of a large glycosylated subunit, gp91(phox), and a smaller subunit, p22(phox). We recently showed in murine macrophages that flavocytochrome b(558) localizes to the PM and Rab11-positive recycling endosomes, whereas in primary hMDMs, gp91(phox) and p22(phox) reside in the PM and the ER. The antimicrobial activity of macrophages, including ROS production, is greatly enhanced by IFN-γ, but how this is achieved is incompletely understood. To further define the mechanisms by which IFN-γ enhances macrophage NADPH oxidase activity, we evaluated changes in flavocytochrome b(558) expression and localization, along with NADPH oxidase activity, in IFN-γ stimulated RAW 264.7 cells and primary murine BMDMs and hMDMs. We found that enhanced capacity for ROS production is, in part, a result of increased protein expression of gp91(phox) and p22(phox) but also demonstrate that IFN-γ induced a shift in the predominant localization of gp91(phox) and p22(phox) from intracellular membrane compartments to the PM. Our results are the first to show that a cytokine can change the distribution of macrophage flavocytochrome b(558) and provide a potential, new mechanism by which IFN-γ modulates macrophage antimicrobial activity. Altogether, our data suggest that the mechanisms by which IFN-γ regulates antimicrobial activity of macrophages are more complex than previously appreciated.


Assuntos
Grupo dos Citocromos b/metabolismo , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA