RESUMO
SreA has been identified as a GATA-type transcription factor that represses iron uptake to avoid iron excess during iron sufficiency. However, knowledge about whether SreA also affects the homeostasis of other divalent metal ions is limited. In this study, by screening Aspergillus fumigatus transcription factor deletion mutant libraries, we demonstrate that the sreA deletion mutant shows the greatest tolerance to MnCl2 among the tested divalent metal ions. Fe and Mn stimuli are able to enhance the expression of SreA with the different time-dependent manner, while the expression of SreA contributes to Mn2+ tolerance. Lack of SreA results in abnormally increased expression of a series of siderophore biosynthesis genes and iron transport-related genes, especially under MnCl2 treatment. Further mechanistic exploration indicated that lack of SreA exacerbates abnormal iron uptake, and iron excess inhibits cellular Mn content; thus, deletion of sreA results in Mn tolerance. Thus, findings in this study have demonstrated a new unexplored function for the transcription factor SreA in regulation of the Mn2+ tolerance.
Assuntos
Fatores de Transcrição GATA , Ferro , Fatores de Transcrição GATA/genética , Ferro/metabolismo , Manganês/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Íons/metabolismoRESUMO
Both branched-chain amino acids (BCAA) and iron are essential nutrients for eukaryotic cells. Previously, the Zn2Cys6-type transcription factor Leu3/LeuB was shown to play a crucial role in regulation of BCAA biosynthesis and nitrogen metabolism in Saccharomyces cerevisiae and Aspergillus nidulans. In this study, we found that the A. fumigatus homolog LeuB is involved in regulation of not only BCAA biosynthesis and nitrogen metabolism but also iron acquisition including siderophore metabolism. Lack of LeuB caused a growth defect, which was cured by supplementation with leucine or iron. Moreover, simultaneous inactivation of LeuB and HapX, a bZIP transcription factor required for adaptation to iron starvation, significantly aggravated the growth defect caused by inactivation of one of these regulators during iron starvation. In agreement with a direct role in regulation of both BCAA and iron metabolism, LeuB was found to bind to phylogenetically conserved motifs in promoters of genes involved in BCAA biosynthesis, nitrogen metabolism, and iron acquisition in vitro and in vivo, and was required for full activation of their expression. Lack of LeuB also caused activation of protease activity and autophagy via leucine depletion. Moreover, LeuB inactivation resulted in virulence attenuation of A. fumigatus in Galleria mellonella. Taken together, this study identified a previously uncharacterized direct cross-regulation of BCCA biosynthesis, nitrogen metabolism and iron homeostasis as well as proteolysis.
Assuntos
Aspergillus fumigatus/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Aspergillus nidulans/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Ferro/metabolismo , Leucina/biossíntese , Leucina/genética , Nitrogênio/metabolismo , Proteostase , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , VirulênciaRESUMO
Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus.