Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Wound Repair Regen ; 32(3): 217-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602068

RESUMO

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Assuntos
Bioimpressão , Impressão Tridimensional , Lesões por Radiação , Pele , Humanos , Bioimpressão/métodos , Lesões por Radiação/terapia , Pele/efeitos da radiação , Pele/lesões , Pele/patologia , Cicatrização , Engenharia Tecidual/métodos
2.
Radiat Res ; 201(2): 160-173, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124379

RESUMO

The effect of ionizing radiation on the gastrointestinal tract is a common complication of abdominal and pelvic radiotherapy. However, the pathological features of radiation enteropathy and its effective medical intervention regimen is still a global challenge. Here, we explored the role and mechanism of enteric alpha-defensins (EαDs) in protecting against radiation enteropathy. To address this, we utilized EαDs-deficiency mice, in which the matrix metallopeptidase 7 to activate Paneth cell α-defensins was knockout (KO) mice, and the complementary wild-type (WT) control mice for this study. Remarkably, the KO mice were more susceptible to 5.0 Gy total-body irradiation, resulting in worse clinic scores and lower survival rate, compared with the wild-type mice. Histological examination indicated that the KO mice were subjected to slow recovery of intestinal villus and mucosa function, characterized by the reduced expression of TFF3, Glut1 and Muc2. In addition, compared with the wild-type controls, the KO mice experienced serious inflammation response in intestinal tissue, indicated by the remarkably increased expression level of IL-1ß, IL-6 and IL-12. Using high-throughput sequencing analysis, we found that the intestinal bacterial community of the KO mice was more prone to dysbiosis than that of the WT mice, with significantly increased abundance of opportunistic pathogenic bacteria, such as Streptococcus sp. and Escherichia-Shigella sp., whereas remarkably decreased probiotics harboring Lactobacillus sp., Desulfovibrio sp. etc. Fecal metabolomics analysis indicated that the relative abundance of 31 metabolites arose significantly different between WT and KO mice on day 10 after radiation exposure. A subset of differential metabolites to regulate host metabolism and immunity, such as acetic acid, acetate, butanoic acid, was negatively correlated with the alteration of gut microbiota in the irradiated KO mice. This study provides new insight into EαDs contribution to the recovery of radiation-induced intestinal damage, and suggests a potential novel target to prevent the adverse effects of radiotherapy.


Assuntos
Microbioma Gastrointestinal , Lesões por Radiação , alfa-Defensinas , Camundongos , Animais , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Microbioma Gastrointestinal/efeitos da radiação , Intestinos , Mucosa Intestinal/metabolismo , Fezes/microbiologia , Lesões por Radiação/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158595

RESUMO

Potassium efflux via the two-pore K+ channel TWIK2 is a requisite step for the activation of NLRP3 inflammasome, however, it remains unclear how K+ efflux is activated in response to select cues. Here, we report that during homeostasis, TWIK2 resides in endosomal compartments. TWIK2 is transported by endosomal fusion to the plasmalemma in response to increased extracellular ATP resulting in the extrusion of K+. We showed that ATP-induced endosomal TWIK2 plasmalemma translocation is regulated by Rab11a. Deleting Rab11a or ATP-ligated purinergic receptor P2X7 each prevented endosomal fusion with the plasmalemma and K+ efflux as well as NLRP3 inflammasome activation in macrophages. Adoptive transfer of Rab11a-depleted macrophages into mouse lungs prevented NLRP3 inflammasome activation and inflammatory lung injury. We conclude that Rab11a-mediated endosomal trafficking in macrophages thus regulates TWIK2 localization and activity at the cell surface and the downstream activation of the NLRP3 inflammasome. Results show that endosomal trafficking of TWIK2 to the plasmalemma is a potential therapeutic target in acute or chronic inflammatory states.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
5.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35745640

RESUMO

Wound healing is seriously retarded when combined with ionizing radiation injury, because radiation-induced excessive reactive oxygen species (ROS) profoundly affect cell growth and wound healing. Mitochondria play vital roles not only as cellular energy factories but also as the main source of endogenous ROS, and in this work a mitochondria-targeting radioprotectant (CY-TMP1) is reported for radiation injury-combined wound repair. It was designed, synthesized and screened out from different conjugates between mitochondria-targeting heptamethine cyanine dyes and a peroxidation inhibitor 2,2,6,6-tetramethylpiperidinyloxy (TEMPO). CY-TMP1 specifically accumulated in mitochondria, efficiently mitigated mitochondrial ROS and total intracellular ROS induced by 6 Gy of X-ray ionizing irradiation, thereby exhibiting a notable radioprotective effect. The mechanism study further demonstrated that CY-TMP1 protected mitochondria from radiation-induced injury, including maintaining mitochondrial membrane potential (MMP) and ATP generation, thereby reducing the ratio of cell apoptotic death. Particularly, an in vivo experiment showed that CY-TMP1 could effectively accelerate wound closure of mice after 6 Gy of whole-body ionizing radiation. Immunohistochemical staining further indicated that CY-TMP1 may improve wound repair through angiogenesis and re-epithelialization. Therefore, mitochondria-targeting ROS scavengers may present a feasible strategy to conquer refractory wound combined with radiation injury.

6.
Pathogens ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678401

RESUMO

Interleukin-1 beta (IL-1ß) promotes liver disease progression and hepatocarcinogenesis in chronic hepatitis B (CHB). Single nucleotide polymorphisms (SNPs) within the promotor region of the IL-1ß gene can affect the progression towards liver cirrhosis and hepatocellular carcinoma (HCC). Aims: We aimed to investigate the association of three common IL-1ß SNPs with hepatitis B virus (HBV)-related HCC in Caucasian patients. Method: A Caucasian cohort of 99 patients with HBe antigen (Ag)-positive CHB, 255 patients with HBeAg-negative CHB and 278 inactive carriers (IC) were enrolled. 105 patients were diagnosed with liver cirrhosis, and 64 with HCC and cirrhosis. Genotyping of the IL-1ß rs1143623, rs1143627 and rs16944 was performed. Results: The rs1143627 TT and rs16944 CC genotypes were more frequent in patients with HCC compared to patients without liver tumours (48% vs. 33%, p = 0.018 and 47% vs. 31%, p = 0.001, respectively). In multivariate analysis, the rs16944 CC genotype was independently associated with HCC (OR = 6.44 [95% CI 1.50-27.59] p = 0.012). The haplotype, including rs1143623 TT and rs16944 CC, was a risk factor for HCC development (OR = 1.55 [95% CI 1.04-2.32] p = 0.031). Conclusions: We identified an association of common IL-1ß SNPs with HBV-related HCC in a Caucasian population. The effect was independent of the phases of chronic HBV infection, which are currently regarded as important HCC risk factors.

7.
Cell Biochem Biophys ; 80(1): 203-216, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34724158

RESUMO

Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.


Assuntos
Dinâmica Mitocondrial , Doença Pulmonar Obstrutiva Crônica , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos
8.
J Med Chem ; 64(6): 3381-3391, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33688738

RESUMO

Nitroimidazoles are one of the most common radiosensitizers investigated to combat hypoxia-induced resistance to cancer radiotherapy. However, due to poor selectivity distinguishing cancer cells from normal cells, effective doses of radiosensitization are much closer to the doses of toxicity induced by nitroimidazoles, limiting their clinical application. In this work, a tumor-targeting near-infrared (NIR) cyanine dye (IR-808) was utilized as a targeting ligand and an NIR fluorophore tracer to chemically conjugate with different structures of hypoxia-affinic nitroimidazoles. One of the NIR fluorophore-conjugated nitroimidazoles (808-NM2) was identified to preferentially accumulate in hypoxic tumor cells, sensitively outline the tumor contour, and effectively inhibit tumor growth synergistically by chemotherapy and radiotherapy. More importantly, nitroimidazoles were successfully taken into cancer cell mitochondria via 808-NM2 conjugate to exert the synergistic effect of chemoradiotherapy. Regarding the important roles of mitochondria on cancer cell survival and metastasis under hypoxia, 808-NM2 may be hopeful to fight against hypoxic tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/terapia , Carbocianinas/uso terapêutico , Corantes/uso terapêutico , Nitroimidazóis/uso terapêutico , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Carbocianinas/química , Quimiorradioterapia , Corantes/química , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nitroimidazóis/química , Hipóxia Tumoral
9.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732285

RESUMO

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Neoplasias Pulmonares/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
10.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764262

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease for which novel approaches are urgently required. We reported increased sphingosine kinase 1 (SPHK1) in IPF lungs and that SPHK1 inhibition using genetic and pharmacologic approaches reduces murine bleomycin-induced pulmonary fibrosis. We determined whether PF543, a specific SPHK1 inhibitor post bleomycin or asbestos challenge mitigates lung fibrosis by reducing mitochondrial (mt) DNA damage and pro-fibrotic monocyte recruitment-both are implicated in the pathobiology of pulmonary fibrosis. Bleomycin (1.5 U/kg), crocidolite asbestos (100 µg/50 µL) or controls was intratracheally instilled in Wild-Type (C57Bl6) mice. PF543 (1 mg/kg) or vehicle was intraperitoneally injected once every two days from day 7-21 following bleomycin and day 14-21 or day 30-60 following asbestos. PF543 reduced bleomycin- and asbestos-induced pulmonary fibrosis at both time points as well as lung expression of profibrotic markers, lung mtDNA damage, and fibrogenic monocyte recruitment. In contrast to human lung fibroblasts, asbestos augmented lung epithelial cell (MLE) mtDNA damage and PF543 was protective. Post-exposure PF543 mitigates pulmonary fibrosis in part by reducing lung epithelial cell mtDNA damage and monocyte recruitment. We reason that SPHK1 signaling may be an innovative therapeutic target for managing patients with IPF and other forms of lung fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Metanol/análogos & derivados , Fibrose Pulmonar/tratamento farmacológico , Pirrolidinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Amianto/toxicidade , Bleomicina/farmacologia , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Metanol/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Monócitos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonas
11.
Nat Immunol ; 21(11): 1430-1443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839607

RESUMO

Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates ß-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.


Assuntos
Reprogramação Celular , Metabolismo Energético , Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Trombospondinas/genética , Animais , Biomarcadores , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Inflamação/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Trombospondinas/metabolismo
12.
Ann Transl Med ; 8(7): 447, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32395491

RESUMO

BACKGROUND: Proper inflammation resolution is critical for cutaneous wound healing and disordered inflammation resolution results in chronic nonhealing wounds. However, the cellular and molecular mechanisms for resolution of inflammation during skin wound healing are not well understood. MicroRNA-34a is regarded as one tumor suppressor with complexed immune regulatory effects, yet its role during skin wound repair is still unclear. METHODS: Circular full thickness excisional wounds were made on the dorsal skin of C57 mice and miR-34a expression pattern was examined by real time RT-PCR and in situ hybridization. The wound healing rates and histologic morphometric analysis were quantified and compared between wounds treated with antagomir-34a and autologous control antagomir-NC wounds, as well as wounds between miR-34a knockout (KO) and wild type (WT) mice. Immunohistochemistry (IHC) for both MPO and F4/80 were performed to examine the infiltrative neutrophils and macrophages in wounds from miR-34a KO and WT mice. Cytokines including IL-1ß, IL-6, TNF-α and IL-10, were detected and analyzed by real time RT-PCR during wound healing. IHC for IL-6 and p-STAT3 were quantified, and WB for p-STAT3 and IL-6R were examined in wounds of miR-34a KO and WT mice. RESULTS: We found miR-34a was significantly downregulated in the inflammatory phase and back to normal levels in the proliferative phase. Both topical knockdown wounds miR-34a levels by antagomir gel and systematic knockout miR-34a using KO mice resulted in impaired wound healing with delayed re-epithelialization and augmented inflammation. IHC results indicated that there were more residual infiltrative inflammatory cells in the proliferative phase. Moreover, over-activated IL-6/STAT3 signal pathway was identified in the wounds of miR-34a KO mice. CONCLUSIONS: Our findings reveal that miR-34a deficiency augments skin wound inflammation response and leads to impaired wound healing, which suggest that targeted inhibition of miR-34a for tissue repair/regeneration should be with serious consideration.

13.
J Clin Invest ; 130(7): 3684-3698, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298238

RESUMO

Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture-induced (CLP-induced) polymicrobial sepsis decreased the expression of transcription factor cAMP response element binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1ß reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits type 4 cyclic nucleotide phosphodiesterase-mediated (PDE4-mediated) hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of the endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.


Assuntos
Antígenos CD/biossíntese , Caderinas/biossíntese , Endotélio Vascular/metabolismo , Interleucina-1beta/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Sepse/metabolismo , Transcrição Gênica , Animais , Antígenos CD/genética , Caderinas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endotélio Vascular/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Camundongos , Camundongos Knockout , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Sepse/genética , Sepse/patologia
14.
Immunity ; 52(3): 475-486.e5, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32164878

RESUMO

Cytosolic DNA acts as a universal danger-associated molecular pattern (DAMP) signal; however, the mechanisms of self-DNA release into the cytosol and its role in inflammatory tissue injury are not well understood. We found that the internalized bacterial endotoxin lipopolysaccharide (LPS) activated the pore-forming protein Gasdermin D, which formed mitochondrial pores and induced mitochondrial DNA (mtDNA) release into the cytosol of endothelial cells. mtDNA was recognized by the DNA sensor cGAS and generated the second messenger cGAMP, which suppressed endothelial cell proliferation by downregulating YAP1 signaling. This indicated that the surviving endothelial cells in the penumbrium of the inflammatory injury were compromised in their regenerative capacity. In an experimental model of inflammatory lung injury, deletion of cGas in mice restored endothelial regeneration. The results suggest that targeting the endothelial Gasdermin D activated cGAS-YAP signaling pathway could serve as a potential strategy for restoring endothelial function after inflammatory injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , DNA Mitocondrial/genética , Células Endoteliais/metabolismo , Inflamação/genética , Nucleotidiltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Células Endoteliais/citologia , Células HEK293 , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
15.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192225

RESUMO

The sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-ß stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-ß-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-ß- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-ß-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-ß- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-ß-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Lisofosfolipídeos/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina/efeitos adversos , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Deleção de Genes , Expressão Gênica , Via de Sinalização Hippo , Humanos , Fibrose Pulmonar Idiopática/etiologia , Imuno-Histoquímica , Metanol/análogos & derivados , Metanol/farmacologia , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pirrolidinas/farmacologia , Esfingosina/metabolismo , Sulfonas , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP
16.
DNA Cell Biol ; 39(8): 1401-1409, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32077751

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common female reproductive metabolisms. It is an endocrine disease that affects reproductive women and often exhibits with hyperandrogenemia, insulin resistance (IR), low inflammation, and an increased risk of type 2 diabetes mellitus, metabolic syndrome, and cardiovascular events such as hypertension and dyslipidemia in patients. However, the molecular mechanism of PCOS is still unclear. Recently, an increasing number of studies have shown that the oxidative stress induced by mitochondrial dysfunction has negative effects on IR, lipid metabolism, and follicular development, suggesting that mitochondrial dysfunction plays an essential role in the development of PCOS. Abnormal mitochondrial DNA copy number in patients with PCOS, and mitochondrial gene mutations, has been the focus of research in recent years, and functional mitochondrial diseases have been gradually accepted as a related factor in PCOS. This review is intended to summarize and discuss previous and recent studies and findings on the connections between mitochondrial dysfunction and PCOS.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Mitocôndrias/genética , Síndrome do Ovário Policístico/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/genética , Dislipidemias/patologia , Feminino , Humanos , Hiperandrogenismo/genética , Hiperandrogenismo/patologia , Hipertensão/genética , Hipertensão/patologia , Resistência à Insulina/genética , Mitocôndrias/patologia , Mutação/genética , Síndrome do Ovário Policístico/patologia
17.
Clin Chim Acta ; 502: 214-221, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733195

RESUMO

Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disease characterized by clinical or laboratorial hyperandrogenism, oligo-anovulation and metabolic abnormalities, including insulin resistance, excessive weight or obesity, type II diabetes, dyslipidemia and an increased risk of cardiovascular disease. The most significant clinical manifestation of PCOS is hyperandrogenism. Excess androgen profoundly affects granulosa cell function and follicular development via complex mechanisms that lead to obesity and insulin resistance. Most PCOS patients with hyperandrogenism have steroid secretion defects that result in abnormal folliculogenesis and failed dominant follicle selection. Hyperandrogenism induces obesity, hairy, acne, and androgenetic alopecia. These symptoms can bring great psychological stress to women. Drugs such as combined oral contraceptive pills, metformin, pioglitazone and low-dose spironolactone help improve pregnancy rates by decreasing androgen levels in vivo. Notably, PCOS is heterogeneous, and hyperandrogenism is not the only pathogenic factor. Obesity and insulin resistance aggravate the symptoms of hyperandrogenism, forming a vicious cycle that promotes PCOS development. Although numerous studies have been conducted, the definitive pathogenic mechanisms of PCOS remain uncertain. This review summarizes and discusses previous and recent findings regarding the relationship between hyperandrogenism, insulin resistance, obesity and PCOS.


Assuntos
Hiperandrogenismo/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Androgênios/biossíntese , Feminino , Humanos , Hiperandrogenismo/diagnóstico , Hiperandrogenismo/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Obesidade/diagnóstico , Obesidade/tratamento farmacológico , Pioglitazona/uso terapêutico , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/tratamento farmacológico , Espironolactona/uso terapêutico
18.
Transl Lung Cancer Res ; 8(5): 674-681, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31737503

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P), a bioactive lipid, is generally increased in human non-small cell lung cancer (NSCLC). Evidence has shown that the levels of enzymes in S1P metabolism were associated with clinical outcomes in patients with NSCLC. Nevertheless, the roles of mRNA expression of major enzymes (SPHK1, SPHK2 and SGPL1) in S1P metabolism for predicting outcomes in NSCLC patients have not been determined. METHODS: "The Kaplan-Meier plotter" (the KM plotter) is an online database which contains gene expression and clinical data of 1,928 NSCLC patients. In this study, we analyzed the relationship between mRNA expression of major enzymes in S1P metabolism and overall survival (OS) in 1,926 NSCLC patients with the KM plotter. Further analyses stratified by smoking history, non-metastasis patents, clinical stages, negative surgical margin, chemotherapy and radiotherapy were also performed. RESULTS: High SPHK1 mRNA expression [hazard ratio (HR) 1.47, 95% confident interval (CI): 1.28-1.68, P=2.6e-08] was significantly correlated to worse OS, but high SPHK2 (0.66, 95% CI: 0.59-0.75, P=1.9e-10) or SGPL1 (HR 0.64, 95% CI: 0.55-0.75, P=8.7e-09) mRNA expression was in favor of better OS in NSCLC patients. CONCLUSIONS: The mRNA expression of SPHK1, SPHK2, and SGPL1 is potential predictor of outcomes in NSCLC patients.

19.
Clin Chim Acta ; 499: 142-148, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31525346

RESUMO

Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases that causes infertility in reproductive women, is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovary morphology (PCOM), and most women with PCOS have metabolic abnormalities. A reduction in plasma sex hormone-binding globulin (SHBG), a transport carrier that binds estrogen and androgens and regulates their biological activities, is often used as an indicator of hyperandrogenism in women with PCOS. Low serum SHBG levels are considered a biomarker of abnormal metabolism and are related to insulin resistance (IR), compensatory hyperinsulinemia and abnormalities in glucose and lipid metabolism in PCOS patients. SHBG is also associated with the long-term prognosis of PCOS. SHBG gene polymorphism is correlated with the risk of PCOS. As SHBG plays a vital role in the occurrence and development of PCOS, knowledge regarding its role in PCOS is helpful for further understanding the molecular mechanism of SHBG in PCOS development and providing new ideas for the treatment of female infertility. Hepatocyte nuclear factor-4α (HNF-4α) is a vital transcription factor in the SHBG synthesis process. HNF-4α binds to the cis-type element DR1 in the SHBG promoter to initiate transcription and regulates hepatic SHBG levels by modulating glucose and lipid metabolism and inflammatory factors. However, it remains unclear whether HNF-4α is indirectly involved in the pathogenesis of PCOS via regulation of hepatic SHBG synthesis. Therefore, this review discusses the interaction between SHBG and the various complications of PCOS as well as the regulatory effect of HNF-4α on SHBG expression.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Globulina de Ligação a Hormônio Sexual/metabolismo , Feminino , Humanos , Globulina de Ligação a Hormônio Sexual/genética
20.
Radiat Res ; 191(4): 360-368, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30759046

RESUMO

Exposure to ionizing radiation combined with traumatic tissue injury is an important life-threatening condition found in the civilian populations after nuclear and radiological events. The significance feature of radiation combined injury (RCI) is the severe combined effect, which makes the injury more complicated. At present, there are limited measures available to treat RCI. Here we show that a chimeric protein dTMP-GH, fusing human growth hormone (hGH) with a tandem dimer of thrombopoietin mimetic peptide (dTMP), could be an effective therapy agent for RCI in a mice model. In this study, using a RCI mouse model exposed to 60Co γ-ray photons (6.0 Gy, 0.3 Gy/min) followed by a 20% total-body-surface-area burns (henceforth called: RB-CI) was established. Administration of dTMP-GH (200 ug/kg) for 10 consecutive days beginning at 24 h after injury improved survival rate during a 30-day observation period compared with the control vehicle group. dTMP-GH treatment also showed enhanced bone marrow hematopoiesis recovery determined by peripheral blood analysis and bone marrow histopathology. Meanwhile, dTMP-GH treatment accelerated skin wound closure and mitigated ileum injury in the RCI model. These results suggest that dTMP-GH may prove to be an effective therapeutic drug for RCI.


Assuntos
Queimaduras/complicações , Hormônio do Crescimento Humano/uso terapêutico , Peptídeos/genética , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Pele/patologia , Animais , Hormônio do Crescimento Humano/genética , Humanos , Íleo/efeitos dos fármacos , Íleo/efeitos da radiação , Masculino , Camundongos , Peptídeos/química , Multimerização Proteica , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA