Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Biotechnol J ; 22(9): 2504-2517, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38687118

RESUMO

Mesophyll conductance (gm) describes the ease with which CO2 passes from the sub-stomatal cavities of the leaf to the primary carboxylase of photosynthesis, Rubisco. Increasing gm is suggested as a means to engineer increases in photosynthesis by increasing [CO2] at Rubisco, inhibiting oxygenation and accelerating carboxylation. Here, tobacco was transgenically up-regulated with Arabidopsis Cotton Golgi-related 3 (CGR3), a gene controlling methylesterification of pectin, as a strategy to increase CO2 diffusion across the cell wall and thereby increase gm. Across three independent events in tobacco strongly expressing AtCGR3, mesophyll cell wall thickness was decreased by 7%-13%, wall porosity increased by 75% and gm measured by carbon isotope discrimination increased by 28%. Importantly, field-grown plants showed an average 8% increase in leaf photosynthetic CO2 uptake. Up-regulating CGR3 provides a new strategy for increasing gm in dicotyledonous crops, leading to higher CO2 assimilation and a potential means to sustainable crop yield improvement.


Assuntos
Dióxido de Carbono , Parede Celular , Células do Mesofilo , Nicotiana , Fotossíntese , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Porosidade
2.
Plant Genome ; 16(4): e20401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903749

RESUMO

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome-wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype-calling methods using data from two autotetraploid species, Miscanthus sacchariflorus and Vaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype-calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost-efficiently implement GWAS and genomic prediction in polyploid crops.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Genótipo , Genômica/métodos , Poliploidia
3.
New Phytol ; 239(6): 2197-2211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357337

RESUMO

Improving photosynthetic efficiency has recently emerged as a promising way to increase crop production in a sustainable manner. While chloroplast size may affect photosynthetic efficiency in several ways, we aimed to explore whether chloroplast size manipulation can be a viable approach to improving photosynthetic performance. Several tobacco (Nicotiana tabacum) lines with contrasting chloroplast sizes were generated via manipulation of chloroplast division genes to assess photosynthetic performance under steady-state and fluctuating light. A selection of lines was included in a field trial to explore productivity. Lines with enlarged chloroplasts underperformed in most of the measured traits. Lines with smaller and more numerous chloroplasts showed a similar efficiency compared with wild-type (WT) tobacco. Chloroplast size only weakly affected light absorptance and light profiles within the leaf. Increasing chloroplast size decreased mesophyll conductance (gm ) but decreased chloroplast size did not increase gm . Increasing chloroplast size reduced chloroplast movements and enhanced non-photochemical quenching. The chloroplast smaller than WT appeared to be no better than WT for photosynthetic efficiency and productivity under field conditions. The results indicate that chloroplast size manipulations are therefore unlikely to lead to higher photosynthetic efficiency or growth.


Assuntos
Cloroplastos , Fotossíntese , Cloroplastos/metabolismo , Folhas de Planta , Nicotiana/genética
4.
Science ; 377(6608): 851-854, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981033

RESUMO

Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. This protective dissipation continues after the leaf transitions to shade, reducing crop photosynthesis. A bioengineered acceleration of this adjustment increased photosynthetic efficiency and biomass in tobacco in the field. But could that also translate to increased yield in a food crop? Here we bioengineered the same change into soybean. In replicated field trials, photosynthetic efficiency in fluctuating light was higher and seed yield in five independent transformation events increased by up to 33%. Despite increased seed quantity, seed protein and oil content were unaltered. This validates increasing photosynthetic efficiency as a much needed strategy toward sustainably increasing crop yield in support of future global food security.


Assuntos
Produção Agrícola , Glycine max , Fotossíntese , Bioengenharia , Folhas de Planta/metabolismo , Glycine max/metabolismo , Luz Solar , Nicotiana/metabolismo
5.
J Exp Bot ; 73(14): 4897-4907, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35561330

RESUMO

In this study, four tobacco transformants overexpressing the inorganic carbon transporter B gene (ictB) were screened for photosynthetic performance relative to the wild type (WT) in field-based conditions. The WT and transgenic tobacco plants were evaluated for photosynthetic performance to determine the maximum rate of carboxylation (Vc, max), maximum rate of electron transport (Jmax), the photosynthetic compensation point (Γ*), quantum yield of PSII (ΦPSII), and mesophyll conductance (gm). Additionally, all plants were harvested to compare differences in above-ground biomass. Overall, transformants did not perform better than the WT on photosynthesis-, biomass-, and leaf composition-related traits. This is in contrast to previous studies that have suggested significant increases in photosynthesis and yield with the overexpression of ictB, although not widely evaluated under field conditions. These findings suggest that the benefit of ictB is not universal and may only be seen under certain growth conditions. While there is certainly still potential benefit to utilizing ictB in the future, further effort must be concentrated on understanding the underlying function of the gene and in which environmental conditions it offers the greatest benefit to crop performance. As it stands at present, it is possible that ictB overexpression may be largely favorable in controlled environments, such as greenhouses.


Assuntos
Carbono , Nicotiana , Biomassa , Dióxido de Carbono , Clorofila , Fotossíntese/genética , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Nicotiana/genética
6.
J Exp Bot ; 73(16): 5745-5757, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595294

RESUMO

Water deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions. However, increased intrinsic water use efficiency (iWUE) typically brings a trade-off with CO2 assimilation as all gas exchange is mediated by stomata, through which CO2 enters the leaf while water vapor exits. Previously, promising results were shown using guard-cell-targeted overexpression of hexokinase to increase iWUE without incurring a penalty in photosynthetic rates or biomass production. Here, two homozygous transgenic tobacco (Nicotiana tabacum) lines expressing Arabidopsis Hexokinase 1 (AtHXK1) constitutively (35SHXK2 and 35SHXK5) and a line that had guard-cell-targeted overexpression of AtHXK1 (GCHXK2) were evaluated relative to wild type for traits related to photosynthesis and yield. In this study, iWUE was significantly higher in GCHXK2 compared with wild type without negatively impacting CO2 assimilation, although results were dependent upon leaf age and proximity of precipitation event to gas exchange measurement.


Assuntos
Arabidopsis , Nicotiana , Arabidopsis/genética , Dióxido de Carbono , Hexoquinase/genética , Fotossíntese , Melhoramento Vegetal , Folhas de Planta , Nicotiana/genética
7.
Science ; 372(6547): 1215-1219, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112694

RESUMO

Hedgehog proteins govern crucial developmental steps in animals and drive certain human cancers. Before they can function as signaling molecules, Hedgehog precursor proteins must undergo amino-terminal palmitoylation by Hedgehog acyltransferase (HHAT). We present cryo-electron microscopy structures of human HHAT in complex with its palmitoyl-coenzyme A substrate and of a product complex with a palmitoylated Hedgehog peptide at resolutions of 2.7 and 3.2 angstroms, respectively. The structures reveal how HHAT overcomes the challenges of bringing together substrates that have different physiochemical properties from opposite sides of the endoplasmic reticulum membrane within a membrane-embedded active site for catalysis. These principles are relevant to related enzymes that catalyze the acylation of Wnt and of the appetite-stimulating hormone ghrelin. The structural and mechanistic insights may advance the development of inhibitors for cancer.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Proteínas Hedgehog/química , Palmitoil Coenzima A/química , Acilação , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Proteínas Hedgehog/metabolismo , Humanos , Membranas Intracelulares/enzimologia , Lipoilação , Modelos Moleculares , Simulação de Dinâmica Molecular , Palmitoil Coenzima A/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína
8.
Proc Natl Acad Sci U S A ; 117(36): 21968-21977, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839342

RESUMO

Biofuel and bioenergy systems are integral to most climate stabilization scenarios for displacement of transport sector fossil fuel use and for producing negative emissions via carbon capture and storage (CCS). However, the net greenhouse gas mitigation benefit of such pathways is controversial due to concerns around ecosystem carbon losses from land use change and foregone sequestration benefits from alternative land uses. Here, we couple bottom-up ecosystem simulation with models of cellulosic biofuel production and CCS in order to track ecosystem and supply chain carbon flows for current and future biofuel systems, with comparison to competing land-based biological mitigation schemes. Analyzing three contrasting US case study sites, we show that on land transitioning out of crops or pasture, switchgrass cultivation for cellulosic ethanol production has per-hectare mitigation potential comparable to reforestation and severalfold greater than grassland restoration. In contrast, harvesting and converting existing secondary forest at those sites incurs large initial carbon debt requiring long payback periods. We also highlight how plausible future improvements in energy crop yields and biorefining technology together with CCS would achieve mitigation potential 4 and 15 times greater than forest and grassland restoration, respectively. Finally, we show that recent estimates of induced land use change are small relative to the opportunities for improving system performance that we quantify here. While climate and other ecosystem service benefits cannot be taken for granted from cellulosic biofuel deployment, our scenarios illustrate how conventional and carbon-negative biofuel systems could make a near-term, robust, and distinctive contribution to the climate challenge.


Assuntos
Biocombustíveis/análise , Carbono/análise , Gases de Efeito Estufa/análise , Biocombustíveis/efeitos adversos , Biotecnologia , Carbono/metabolismo , Celulose/química , Celulose/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Ecossistema , Etanol/metabolismo , Gases de Efeito Estufa/efeitos adversos
9.
Radiat Prot Dosimetry ; 187(4): 418-425, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31605130

RESUMO

An intercomparison exercise (IC) on whole body dosemeters to determine the quantity personal dose equivalent Hp (10) in photon radiation fields was jointly organised and conducted by the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for individual monitoring services (IMS) in Asia and the Pacific region. This was arranged to help the IMS in the region to achieve a more accurate dosimetry service and to improve their performance. Twenty-four IMS participated in this IC. Four sets of dosemeters were irradiated using X-ray and gamma radiation qualities at 0° and 20° angle of incidence, respectively. All the IMS provided results that were within the acceptable limits defined by the IAEA. However, only a minority of participants reported confidence intervals that included the reference dose, for each exposure scenario. For few systems, the overall performance could be significantly improved by reviewing calibration procedures.


Assuntos
Exposição Ocupacional/análise , Fótons , Dosímetros de Radiação/normas , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Contagem Corporal Total/normas , Ásia , Austrália , Humanos , Energia Nuclear , Exposição Ocupacional/prevenção & controle , Doses de Radiação
10.
Nat Plants ; 5(7): 715-721, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285558

RESUMO

High accumulation of heterologous proteins expressed from the plastid genome has sometimes been reported to result in compromised plant phenotypes. Comparisons of transplastomic plants to wild-type (WT) are typically made in environmentally controlled chambers with relatively low light; little is known about the performance of such plants under field conditions. Here, we report on two plastid-engineered tobacco lines expressing the bacterial cellulase Cel6A. Field-grown plants producing Cel6A at ~20% of total soluble protein exhibit no loss in biomass or Rubisco content and only minor reductions in photosynthesis compared to WT. These experiments demonstrate that, when grown in the field, tobacco possesses sufficient metabolic flexibility to accommodate high levels of recombinant protein by increasing total protein synthesis and accumulation and/or by reallocating unneeded endogenous proteins. Based on current tobacco cultivation practices and readily achievable recombinant protein yields, we estimate that specific proteins could be obtained from field-grown transgenic tobacco plants at costs three orders of magnitude less than current cell culture methods.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Cloroplastos/metabolismo , Nicotiana/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Celulase/análise , Celulase/genética , Cloroplastos/química , Cloroplastos/genética , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
11.
Nat Cell Biol ; 21(4): 534, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30842593

RESUMO

In the version of this Article originally published the same blot was inadvertently presented as both p-Rb and Cyclin A in Fig. 2a. This blot corresponds to the p-Rb panel, as can be seen in the unprocessed version of these blots in Supplementary Fig. 9. The corrected version of the panel is shown below, together with a completely uncropped image of both blots. In addition, in the 'Viral transduction' section of the Methods, the pLKO.1 plasmids encoding short hairpin RNAs targeting human Rnd1 were incorrectly listed as clones TRCN0000018338 and TRCN0000039977. The correct clone numbers are TRCN0000047434 and TRCN0000047435.

12.
Plant Cell Environ ; 42(4): 1287-1301, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30375663

RESUMO

The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.


Assuntos
Chaperonas Moleculares/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Chaperonas Moleculares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana/crescimento & desenvolvimento
13.
Ann Bot ; 124(4): 731-748, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30247525

RESUMO

BACKGROUND AND AIMS: Miscanthus, a C4 perennial grass native to East Asia, is a promising biomass crop. Miscanthus sacchariflorus has a broad geographic range, is used to produce paper in China and is one of the parents (along with Miscanthus sinensis) of the important biomass species Miscanthus × giganteus. The largest study of M. sacchariflorus population genetics to date is reported here. METHODS: Collections included 764 individuals across East Asia. Samples were genotyped with 34 605 single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RAD-seq) and ten plastid microsatellites, and were subjected to ploidy analysis by flow cytometry. KEY RESULTS: Six major genetic groups within M. sacchariflorus were identified using SNP data: three diploid groups, comprising Yangtze (M. sacchariflorus ssp. lutarioriparius), N China and Korea/NE China/Russia; and three tetraploid groups, comprising N China/Korea/Russia, S Japan and N Japan. Miscanthus sacchariflorus ssp. lutarioriparius was derived from the N China group, with a substantial bottleneck. Japanese and mainland tetraploids originated from independent polyploidization events. Hybrids between diploid M. sacchariflorus and M. sinensis were identified in Korea, but without introgression into either parent species. In contrast, tetraploid M. sacchariflorus in southern Japan and Korea exhibited substantial hybridization and introgression with local diploid M. sinensis. CONCLUSIONS: Genetic data indicated that the land now under the Yellow Sea was a centre of diversity for M. sacchariflorus during the last glacial maximum, followed by a series of migrations as the climate became warmer and wetter. Overall, M. sacchariflorus has greater genetic diversity than M. sinensis, suggesting that breeding and selection within M. sacchariflorus will be important for the development of improved M. × giganteus. Ornamental M. sacchariflorus genotypes in Europe and North America represent a very narrow portion of the species' genetic diversity, and thus do not well represent the species as a whole.


Assuntos
Diploide , Tetraploidia , China , Europa (Continente) , Ásia Oriental , Humanos , Japão , América do Norte , Poaceae
14.
Nat Commun ; 9(1): 868, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511193

RESUMO

Insufficient water availability for crop production is a mounting barrier to achieving the 70% increase in food production that will be needed by 2050. One solution is to develop crops that require less water per unit mass of production. Water vapor transpires from leaves through stomata, which also facilitate the influx of CO2 during photosynthetic assimilation. Here, we hypothesize that Photosystem II Subunit S (PsbS) expression affects a chloroplast-derived signal for stomatal opening in response to light, which can be used to improve water-use efficiency. Transgenic tobacco plants with a range of PsbS expression, from undetectable to 3.7 times wild-type are generated. Plants with increased PsbS expression show less stomatal opening in response to light, resulting in a 25% reduction in water loss per CO2 assimilated under field conditions. Since the role of PsbS is universal across higher plants, this manipulation should be effective across all crops.


Assuntos
Produção Agrícola , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Água/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Luz , Fotossíntese , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/metabolismo
15.
Nature ; 553(7689): 526-529, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342140

RESUMO

The maturation of RAS GTPases and approximately 200 other cellular CAAX proteins involves three enzymatic steps: addition of a farnesyl or geranylgeranyl prenyl lipid to the cysteine (C) in the C-terminal CAAX motif, proteolytic cleavage of the AAX residues and methylation of the exposed prenylcysteine residue at its terminal carboxylate. This final step is catalysed by isoprenylcysteine carboxyl methyltransferase (ICMT), a eukaryote-specific integral membrane enzyme that resides in the endoplasmic reticulum. ICMT is the only cellular enzyme that is known to methylate prenylcysteine substrates; methylation is important for the biological functions of these substrates, such as the membrane localization and subsequent activity of RAS, prelamin A and RAB. Inhibition of ICMT has potential for combating progeria and cancer. Here we present an X-ray structure of ICMT, in complex with its cofactor, an ordered lipid molecule and a monobody inhibitor, at 2.3 Å resolution. The active site spans cytosolic and membrane-exposed regions, indicating distinct entry routes for the cytosolic methyl donor, S-adenosyl-l-methionine, and for prenylcysteine substrates, which are associated with the endoplasmic reticulum membrane. The structure suggests how ICMT overcomes the topographical challenge and unfavourable energetics of bringing two reactants that have different cellular localizations together in a membrane environment-a relatively uncharacterized but defining feature of many integral membrane enzymes.


Assuntos
Proteínas Metiltransferases/química , Proteínas Metiltransferases/metabolismo , Tribolium/enzimologia , Animais , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Desenho de Fármacos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Proteínas Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
16.
Front Plant Sci ; 8: 998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649261

RESUMO

Down-regulation of photosynthesis is among the most common responses observed in C3 plants grown under elevated atmospheric CO2 concentration ([CO2]). Down-regulation is often attributed to an insufficient capacity of sink organs to use or store the increased carbohydrate production that results from the stimulation of photosynthesis by elevated [CO2]. Down-regulation can be accentuated by inadequate nitrogen (N) supply, which may limit sink development. While there is strong evidence for down-regulation of photosynthesis at elevated [CO2] in enclosure studies most often involving potted plants, there is little evidence for this when [CO2] is elevated fully under open-air field treatment conditions. To assess the importance of sink strength on the down-regulation of photosynthesis and on the potential of N to mitigate this down-regulation under agriculturally relevant field conditions, two tobacco cultivars (Nicotiana tabacum L. cv. Petit Havana; cv. Mammoth) of strongly contrasting ability to produce the major sink of this crop, leaves, were grown under ambient and elevated [CO2] and with two different N additions in a free air [CO2] (FACE) facility. Photosynthetic down-regulation at elevated [CO2] reached only 9% in cv. Mammoth late in the season likely reflecting sustained sink strength of the rapidly growing plant whereas down-regulation in cv. Petit Havana reached 25%. Increased N supply partially mitigated down-regulation of photosynthesis in cv. Petit Havana and this mitigation was dependent on plant developmental stage. Overall, these field results were consistent with the hypothesis that sustained sink strength, that is the ability to utilize photosynthate, and adequate N supply will allow C3 crops in the field to maintain enhanced photosynthesis and therefore productivity as [CO2] continues to rise.

17.
Ear Nose Throat J ; 96(6): E24-E28, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28636738

RESUMO

We conducted a retrospective case review to determine if the presence of an Accreditation Council for Graduate Medical Education (ACGME) fellowship-trained pediatric anesthesiologist improves efficiency during pediatric tonsillectomies and adenotonsillectomies in hospitals that do not have dedicated pediatric operating rooms and, if so, to determine which specific anesthesia practices might account for such a difference. We reviewed the charts of all patients aged 12 years and younger who had undergone a tonsillectomy or adenotonsillectomy from Jan. 1, 2008, through Aug. 1, 2013, at San Francisco General Hospital. A total of 75 cases met our eligibility criteria. We compiled information on patient demographics, surgical time, anesthesia time, and anesthesia practices. Our primary study outcome was the amount of anesthesia-controlled time (ACT), which is the sum of time spent in induction and emergence. Cases were grouped according to whether the operation was staffed by an ACGME fellowship-trained pediatric anesthesiologist or a general anesthesiologist. Data were analyzed for 1 pediatric anesthesiologist and 23 general anesthesiologists. We found that ACT was significantly shorter during the cases staffed by the ACGME fellowship-trained pediatric anesthesiologist, although there were no major differences in anesthesia practices between the types of anesthesiologist. We suggest that staffing pediatric tonsillectomy operations with a fellowship-trained pediatric anesthesiologist may be an effective strategy for increasing operating room efficiency.


Assuntos
Adenoidectomia , Anestesiologistas , Competência Clínica/normas , Salas Cirúrgicas/organização & administração , Tonsilectomia , Acreditação/normas , Adenoidectomia/métodos , Adenoidectomia/normas , Anestesia/métodos , Anestesia/normas , Anestesiologistas/educação , Anestesiologistas/normas , Criança , Bolsas de Estudo , Feminino , Humanos , Masculino , Melhoria de Qualidade , Tonsilectomia/métodos , Tonsilectomia/normas , Resultado do Tratamento , Estados Unidos
18.
Science ; 354(6314): 857-861, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856901

RESUMO

Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here, we describe the bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Because the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a route to obtaining a sustainable increase in productivity for food crops and a much-needed yield jump.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Escuridão , Nicotiana/crescimento & desenvolvimento , Fotossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bioengenharia , Dióxido de Carbono/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/efeitos da radiação , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/efeitos da radiação , Oxirredutases/genética , Oxirredutases/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Luz Solar , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efeitos da radiação
19.
Plant Cell Environ ; 39(4): 908-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26670088

RESUMO

Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.


Assuntos
Southern Blotting/métodos , DNA Bacteriano/genética , Dosagem de Genes , Nicotiana/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Loci Gênicos , Homozigoto , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes
20.
Environ Sci Technol ; 49(4): 2512-22, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25588032

RESUMO

We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol.


Assuntos
Etanol/economia , Gasolina/economia , Efeito Estufa/prevenção & controle , Biocombustíveis/economia , Efeito Estufa/economia , Estados Unidos , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA