Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 213, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537066

RESUMO

BACKGROUND: Inflammation in the central nervous system (CNS) is observed in many neurological disorders. Nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling plays an essential role in modulating neuroinflammation. CYR119 is a CNS-penetrant sGC stimulator that amplifies endogenous NO-sGC-cGMP signaling. We evaluated target engagement and the effects of CYR119 on markers of neuroinflammation in vitro in mouse microglial cells and in vivo in quinolinic acid (QA)-induced and high-fat diet-induced rodent neuroinflammation models. METHODS: Target engagement was verified in human embryonic kidney (HEK) cells, rat primary neurons, mouse SIM-A9 cells, and in rats by measuring changes in cGMP and downstream targets of sGC signaling [phosphorylated vasodilator-stimulated phosphoprotein (pVASP), phosphorylated cAMP-response element binding (pCREB)]. In SIM-A9 cells stimulated with lipopolysaccharides (LPS), markers of inflammation were measured when cells were treated with or without CYR119. In rats, microinjections of QA and vehicle were administered into the right and left hemispheres of striatum, respectively, and then rats were dosed daily with either CYR119 (10 mg/kg) or vehicle for 7 days. The activation of microglia [ionized calcium binding adaptor molecule 1 (Iba1)] and astrocytes [glial fibrillary acidic protein (GFAP)] was measured by immunohistochemistry. Diet-induced obese (DIO) mice were treated daily with CYR119 (10 mg/kg) for 6 weeks, after which inflammatory genetic markers were analyzed in the prefrontal cortex. RESULTS: In vitro, CYR119 synergized with exogenous NO to increase the production of cGMP in HEK cells and in primary rat neuronal cell cultures. In primary neurons, CYR119 stimulated sGC, resulting in accumulation of cGMP and phosphorylation of CREB, likely through the activation of protein kinase G (PKG). CYR119 attenuated LPS-induced elevation of interleukin 6 (IL-6) and tumor necrosis factor (TNF) in mouse microglial cells. Following oral dosing in rats, CYR119 crossed the blood-brain barrier (BBB) and stimulated an increase in cGMP levels in the cerebral spinal fluid (CSF). In addition, levels of proinflammatory markers associated with QA administration or high-fat diet feeding were lower in rodents treated with CYR119 than in those treated with vehicle. CONCLUSIONS: These data suggest that sGC stimulation could provide neuroprotective effects by attenuating inflammatory responses in nonclinical models of neuroinflammation.


Assuntos
Anti-Inflamatórios/metabolismo , Sistema Nervoso Central/metabolismo , GMP Cíclico/metabolismo , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
Am J Physiol Renal Physiol ; 319(4): F697-F711, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865013

RESUMO

Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy. Praliciguat monotherapy did not affect hemodynamics. In contrast, enalapril monotherapy lowered blood pressure but did not attenuate proteinuria. Renal expression of genes in pathways involved in inflammation, fibrosis, oxidative stress, and kidney injury was lower in praliciguat-treated obese ZSF1 rats than in obese control rats; fasting glucose and cholesterol were also lower with praliciguat treatment. To gain insight into how tubular mechanisms might contribute to its pharmacological effects on the kidneys, we studied the effects of praliciguat on pathological processes and signaling pathways in cultured human primary renal proximal tubular epithelial cells (RPTCs). Praliciguat inhibited the expression of proinflammatory cytokines and secretion of monocyte chemoattractant protein-1 in tumor necrosis factor-α-challenged RPTCs. Praliciguat treatment also attenuated transforming growth factor-ß-mediated apoptosis, changes to a mesenchyme-like cellular phenotype, and phosphorylation of SMAD3 in RPTCs. In conclusion, praliciguat improved proteinuria in the ZSF1 rat model of diabetic nephropathy, and its actions in human RPTCs suggest that tubular effects may contribute to its renal benefits, building upon strong evidence for the role of cGMP signaling in renal health.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Nefrite/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Enalapril/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Nefrite/metabolismo , Nefrite/patologia , Fosforilação , Ratos Zucker , Transdução de Sinais , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA