Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754818

RESUMO

Excessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In non-ruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization. Thus, the objective was to unravel the role of mTOR-mediated autophagy on macrophage polarization in ketotic dairy cows. Four experiments were performed as follows: (1) In vitro differentiated monocyte-derived macrophages from healthy dairy cows or dairy cows with clinical ketosis (CK) were treated with 100 ng/mL lipopolysaccharide (LPS) and 100 ng/mL interferon-γ (IFN-γ) or 10 ng/mL interleukin-4 (IL4) and 10 ng/mL interleukin-10 (IL10) for 24 h; (2) Immortalized bovine macrophages were treated with 0, 0.3, 0.6, 1.2 mM FFA and LPS and IFN-γ or IL4 and IL10 for 24 h; (3) Macrophages were pretreated with 2 µM 4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine (MHY1485) for 30 min before treatment with LPS and IFN-γ or IL4 and IL10; (4) Macrophages were pretreated with 100 nM rapamycin (RAPA) for 2 h before treatment with LPS and IFN-γ or IL4 and IL10. Compared with healthy cows, cows with CK had a greater mean fluorescence intensity (MFI) of CD86+, but lower MFI of CD206+ and lower number of autophagosomes and autolysosomes in macrophages. Exogenous FFA treatment upregulated protein abundance of inducible nitric oxide synthase (iNOS) and mean fluorescence intensity of CD86, whereas it downregulated the protein abundance of arginase 1 (ARG1) and mean fluorescence intensity of CD206. In addition, FFA increased the p-p65/p65 protein abundance and tumor necrosis factor α (TNFA), interleukin-1B (IL1B), and interleukin-6 (IL6) mRNA abundance, but decreased LC3-phosphatidylethanolamine conjugate (LC3-II) protein abundance and autophagosomes and autolysosomes number. Pretreatment with MHY1485 promoted macrophage M1 polarization and inhibited macrophage M2 polarization via decreased mTOR-mediated autophagy. Activation of mTOR-mediated autophagy by pretreatment with RAPA attenuated the upregulation of inflammation in M1 macrophages that was induced by FFA. These data revealed that high concentrations of FFA promote macrophage M1 polarization in ketotic dairy cows via impairing mTOR-mediated autophagy.

2.
BMC Vet Res ; 20(1): 88, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459489

RESUMO

BACKGROUND: Strontium (Sr) has similar physicochemical properties as calcium (Ca) and is often used to evaluate the absorption of this mineral. Because the major route of Ca absorption in the bovine occurs in the rumen, it is essential to understand whether Sr impacts the ruminal epithelial cells and to what extent. RESULTS: In the present study, RNA sequencing and assembled transcriptome assembly were used to identify transcription factors (TFs), screening and bioinformatics analysis in bovine ruminal epithelial cells treated with Sr. A total of 1405 TFs were identified and classified into 64 families based on an alignment of conserved domains. A total of 174 differently expressed TFs (DE-TFs) were increased and 52 DE-TFs were decreased; the biological process-epithelial cell differentiation was inhibited according to the GSEA-GO analysis of TFs; The GO analysis of DE-TFs was enriched in the DNA binding. Protein-protein interaction network (PPI) found 12 hubs, including SMAD4, SMAD2, SMAD3, SP1, GATA2, NR3C1, PPARG, FOXO1, MEF2A, NCOA2, LEF1, and ETS1, which verified genes expression levels by real-time PCR. CONCLUSIONS: In this study, SMAD2, PPARG, LEF1, ETS1, GATA2, MEF2A, and NCOA2 are potential candidates that could be targeted by Sr to mediate cell proliferation and differentiation, as well as lipid metabolism. Hence, these results enhance the comprehension of Sr in the regulation of transcription factors and provide new insight into the study of Sr biological function in ruminant animals.


Assuntos
Estrôncio , Fatores de Transcrição , Humanos , Bovinos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estrôncio/farmacologia , Estrôncio/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Perfilação da Expressão Gênica/veterinária , Células Epiteliais/metabolismo , Transcriptoma , Cálcio/metabolismo
3.
J Dairy Sci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395404

RESUMO

High-yielding dairy cows in early lactation often encounter difficulties in meeting the energy requirements essential for maintaining milk production. This is primarily attributed to insufficient dry matter intake, which consequently leads to sustained lipolysis of adipose tissue. Fatty acids released by lipolysis can disrupt metabolic homeostasis. Autophagy, an adaptive response to intracellular environmental changes, is considered a crucial mechanism for regulating lipid metabolism and maintaining a proper cellular energy status. Despite its close relationship with aberrant lipid metabolism and cyto-lipotoxicity in animal models of metabolic disorders, the precise function of diacylglycerol o-acyltransferase 1 (DGAT1) in bovine adipose tissue during periods of negative energy balance (NEB) is not fully understood. Particularly regarding its involvement in lipolysis and autophagy. The objective of the present study was to assess the impact of DGAT1 on both lipolysis and autophagy in bovine adipose tissue and isolated adipocytes. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of BHB, which were 3.19 mM (interquartile range = 0.20) and 0.50 mM (interquartile range = 0.06), respectively. Protein abundance of DGAT1 and phosphorylation levels of unc-51-like kinase 1 (ULK1), were greater in adipose tissue from cows with ketosis, whereas phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were lower. Furthermore, when adipocytes isolated from the harvested adipose tissue of 15 healthy cows were transfected with DGAT1 overexpression adenovirus or DGAT1 small interfering RNA followed by exposure to epinephrine (EPI), it led to greater ratios and protein abundance of phosphorylated hormone-sensitive triglyceride lipase (LIPE) to total LIPE and adipose triglyceride lipase (ATGL), while inhibiting the protein phosphorylation levels of ULK1, PI3K, AKT and mTOR. Overexpression of DGAT1 in EPI-treated adipocytes reduced lipolysis and autophagy, whereas silencing DGAT1 further exacerbated EPI-induced lipolysis and autophagy. Taken together, these findings indicate that upregulation of DGAT1 may function as an adaptive response to suppress adipocytes lipolysis, highlighting the significance of maintaining metabolic homeostasis in dairy cows during periods of NEB.

4.
J Dairy Sci ; 107(1): 555-572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220437

RESUMO

Endometritis is one of the most common causes of infertility in dairy cows, and is histopathologically characterized by inflammation and damage of endometrial epithelium. Interferon-tau (IFN-τ) is a novel type I interferon secreted by ruminant trophoblast cells with low cytotoxicity even at high doses. Previous studies suggested that IFN-τ plays an important role in inflammation. However, the mechanisms whereby IFN-τ may modulate the inflammatory responses in the bovine endometrium are unknown. In the present study, primary bovine endometrial epithelial cells (BEEC) isolated from fresh and healthy uterine horns were used for in vitro studies. The integrity of BEEC was assessed by immunofluorescence staining for cytokeratin 18 (CK-18, a known epithelial marker). For the experiments, BEEC were stimulated with different concentrations of lipopolysaccharide (LPS; 0-20 µg/mL) for different times (0-24 h). Cell viability and apoptosis were assessed via CCK-8 and flow cytometry. In a preliminary study, we observed that compared with the control group without LPS, 10 µg/mL of LPS stimulation for 24 h induced apoptosis. In a subsequent study, 20 or 40 ng/mL of IFN-τ alleviated LPS-induced apoptosis. Relative to the LPS group, western blotting further revealed that IFN-τ inhibited the protein abundance of TLR4 and phosphorylated (p-) p65 (p-p65) and Bax/Bcl-2 ratio, suggesting that IFN-τ can protect BEEC against inflammatory injury. Furthermore, the protein abundance of p-phosphoinositide 3-kinase (p-PI3K), p-protein kinase B (p-AKT), p-glycogen synthase kinase-3ß (p-GSK3ß), ß-catenin, and p-forkhead box O1 (p-FoxO1) was lower in the LPS group, whereas IFN-τ upregulated their abundance. The use of LY294002, a specific inhibitor of PI3K/AKT, attenuated the upregulation of p-PI3K, p-AKT p-GSK3ß, ß-catenin, and p-FoxO1 induced by IFN-τ, and also blocked the downregulation of TLR4, p-p65, and Bax/Bcl-2 ratio. This suggested that the inhibition of TLR4 signaling by IFN-τ was mediated by the PI3K/AKT pathway. Furthermore, compared with the LPS group, the ß-catenin agonist SB216763 led to greater p-FoxO1 and lower p-p65 and cell apoptosis. In contrast, knockdown of ß-catenin using small interfering RNA had the opposite effects. To explore the role of FoxO1 on the inhibition of TLR4 by IFN-τ, we employed LY294002 to inhibit the PI3K/AKT while FoxO1 was knocked down. Results revealed that the knockdown of FoxO1 blocked the upregulation of TLR4 and p-p65 induced by LY294002, and enhanced the inhibition of IFN-τ on TLR4, p-p65, and cell apoptosis. Overall, these findings confirmed that IFN-τ can protect endometrial epithelial cells against inflammatory injury via suppressing TLR4 activation through the regulation of the PI3K/AKT/ß-catenin/FoxO1 axis. These represent new insights into the molecular mechanisms underlying the anti-inflammatory function of IFN-τ in BEEC, and also provide a theoretical basis for further studies on the in vivo application of IFN-τ to help prevent negative effects of endometritis.


Assuntos
Doenças dos Bovinos , Endometrite , Interferon Tipo I , Animais , Bovinos , Feminino , Apoptose , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo , Doenças dos Bovinos/prevenção & controle , Endometrite/prevenção & controle , Endometrite/veterinária , Endométrio/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/veterinária , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721866

RESUMO

Feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during periods of metabolic stress is beneficial to the health of dairy cows partially through its effect on the gut microbiota. Whether SCFP alters the ileal microbiota in lactating cows during intestinal challenges induced by feed restriction (FR) is not known. We used 16S rRNA sequencing to assess if feeding SCFP during FR to induce gut barrier dysfunction alters microbiota profiles in the ileum. The mRNA abundance of key genes associated with tissue structures and immunity was also detected. Multiparous cows (97.1 ±â€…7.6 days in milk (DIM); n = 7 per treatment) fed a control diet or the control plus 19 g/d NutriTek for 9 wk were subjected to an FR challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR. DNA extracted from ileal digesta was subjected to PacBio Full-Length 16S rRNA gene sequencing. High-quality amplicon sequence analyses were performed with Targeted Amplicon Diversity Analysis and MicrobiomeAnalyst. Functional analysis was performed and analyzed using PICRUSt and STAMP. Feeding SCFP did not (P > 0.05) alter dry matter intake, milk yield, or milk components during FR. In addition, SCFP supplementation tended (P = 0.07) to increase the relative abundance of Proteobacteria and Bifidobacterium animalis. Compared with controls, feeding SCFP increased the relative abundance of Lactobacillales (P = 0.03). Gluconokinase, oligosaccharide reducing-end xylanase, and 3-hydroxy acid dehydrogenase were among the enzymes overrepresented (P < 0.05) in response to feeding SCFP. Cows fed SCFP had a lower representation of adenosylcobalamin biosynthesis I (early cobalt insertion) and pyrimidine deoxyribonucleotides de novo biosynthesis III (P < 0.05). Subsets of the Firmicutes genus, Bacteroidota phylum, and Treponema genus were correlated with the mRNA abundance of genes associated with ileal integrity (GCNT3, GALNT5, B3GNT3, FN1, ITGA2, LAMB2) and inflammation (AOX1, GPX8, CXCL12, CXCL14, CCL4, SAA3). Our data indicated that the moderate FR induced dysfunction of the ileal microbiome, but feeding SCFP increased the abundance of some beneficial gut probiotic bacteria and other species related to tissue structures and immunity.


Stressors, including limited access to feed, heat stress, transportation, and disease are factors that reduce integrity of the gut epithelial barrier in livestock. Feeding Saccharomyces cerevisiae fermentation products (SCFP) mitigated immunological, aflatoxin, and subclinical mastitis challenges, heat stress, and grain-based subacute ruminal acidosis indicating it also could alleviate gut damage. Microbiota profiling of ileal epithelium using 16S rRNA sequencing and bioinformatics revealed that Lactobacillales and Animalis abundance was greater in cows fed SCFP versus controls during a 5-d feed restriction to induce intestinal dysfunction. Some genera of Firmicutes, Bacteroidota phylum, and Treponema genus were correlated with mRNA abundance of genes associated with integrity and inflammation of ileal epithelium. Thus, feeding SCFP can increase the abundance of beneficial bacteria during a gut challenge.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Feminino , Bovinos , Animais , Suplementos Nutricionais/análise , Lactação/fisiologia , Saccharomyces cerevisiae/metabolismo , Fermentação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Leite/metabolismo , RNA Mensageiro/metabolismo , Ração Animal/análise , Rúmen/metabolismo
6.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678795

RESUMO

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Assuntos
Doenças dos Bovinos , Deficiência de Colina , Feminino , Bovinos , Animais , Deficiência de Colina/metabolismo , Deficiência de Colina/veterinária , Gotículas Lipídicas/metabolismo , Colina/farmacologia , Colina/metabolismo , Lactação/fisiologia , Fígado/metabolismo , Fosfolipídeos/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Rúmen/metabolismo , Leite/química , Doenças dos Bovinos/metabolismo
7.
Res Vet Sci ; 164: 104988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678126

RESUMO

Methionine and folate cycles along with transsulfuration comprise the one­carbon metabolism (OCM) pathway. Amino acids and other nutrients feed into OCM, which is central to cellular function. mRNA abundance, proteins (Western blotting), and metabolites (GC-MC) associated with OCM were used to characterize these mechanisms in fetal tissues. Liver, whole intestine, and semitendinosus muscle were harvested from fetuses in 6 multiparous Holstein cows (37 kg milk/d, 100 d gestation). Data were analyzed using PROC MIXED (SAS 9.4). Protein abundance of BHMT was greatest (P < 0.01) in liver suggesting active remethylation of homocysteine to methionine. This idea was supported by the greater (P < 0.05) mRNA of CBS, BHMT, MTR, SHMT1, and MAT1A (encoding OCM enzymes) in liver. The antioxidant protein GPX3 had greatest (P < 0.05) abundance in liver, whereas the glutathione-transferase GSTM1 was 5-fold greater (P < 0.05) in intestine than liver and muscle. Greatest concentrations of glycine, serine, and taurine along with lower cysteine underscored the relevance of OCM in fetal liver. Phosphoethanolamine concentration was greatest (4-fold, P < 0.05) in intestine and along with the greatest (P < 0.05) mRNA of SLC44A1 (choline transporter), CHKA, and CEPT1 underscored the importance of the CDP-choline pathway. Greatest (P < 0.05) mRNA of PPARA, CPT1A, and HMGCS2 along with lower PCK1 in liver highlighted a potential reliance on fatty acid oxidation. In contrast, greater (P < 0.05) concentration of myo-inositol in muscle and intestine suggested both tissues rely on glucose as main source of energy. Future research should address how environmental inputs such as maternal nutrition alter these pathways in fetal tissues and their phenotypic outcomes.


Assuntos
Carbono , Dieta , Feminino , Animais , Bovinos , Dieta/veterinária , Carbono/metabolismo , Metionina , Fígado/metabolismo , Leite/metabolismo , Nutrientes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lactação/fisiologia
8.
Res Vet Sci ; 162: 104956, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516040

RESUMO

We investigated linkages among BCS prior to calving and placentome concentrations of metabolites, proteins in one­carbon metabolism (OCM) and protein synthesis, and nutrient transport. Multiparous Holstein cows retrospectively divided by prepartal BCS at -4 weeks relative to parturition into high BCS (HBCS = 3.58 ± 0.23; n = 9) or normal BCS (NBCS = 3.02 ± 0.17; n = 13) were used. BCS was assessed using a 5-point scale (1 = thin, 5 = fat). Four placentomes per cow were collected at delivery and frozen in liquid N. Western blotting was used for protein abundance. Cystathionine-ß-synthase (CBS) and betaine-homocysteine-S-methyltransferase (BHMT) activity were measured via 14C assays. Amino acids (AA) and metabolites in OCM were measured by liquid chromatography mass spectrometry (LC-MS). Compared with NBCS cows, the cellular stress sensor p-eIF2α was more than 2-fold greater (P = 0.04) in HBCS. Abundance of the AA-catabolism enzyme branched-chain α-ketoacid dehydrogenase complex was lower (P = 0.05) in HBCS cows. Although BHMT activity did not differ, greater concentration of betaine (P = 0.01) and lower (P = 0.05) concentration of dimethylglycine in HBCS cows suggested reduced flux through the methionine cycle. Despite a lack of difference in CBS activity, lower concentrations of cystathionine (P = 0.03) and hypotaurine (P = 0.04) along with lower cysteine and the tendency for lower total GSH (P = 0.10) in HBCS cows suggested a decrease in transsulfuration. Overall, associations between OCM in placentomes and BCS at calving exist. Identifying mechanisms responsible for these effects merits further research.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Animais , Leite/metabolismo , Betaína/análise , Betaína/metabolismo , Cistationina/análise , Cistationina/metabolismo , Estudos Retrospectivos , Placenta/metabolismo , Nutrientes , Proteínas de Membrana Transportadoras/metabolismo , Carbono/análise , Carbono/metabolismo , Dieta/veterinária , Período Pós-Parto
9.
Animals (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443904

RESUMO

Vitamin B12 plays a role in the remethylation of homocysteine to Met, which then serves as a substrate for Met adenosyltransferase (MAT) to synthesize S-adenosylmethionine (SAM). We investigated effects of feeding two cobalt sources [Co-glucoheptonate (CoPro) or CoPectin, Zinpro Corp.], an experimental ruminally-available source of folic acid (FOA), and rumen-protected Met (RPM) on performance and hepatic one-carbon metabolism in peripartal Holstein cows. From -30 to 30 d around calving, 72 multiparous cows were randomly allocated to: CoPro, CoPro + FOA, CoPectin + FOA, or CoPectin + FOA + RPM. The Co treatments delivered 1 mg Co/kg of DM (CoPro or CoPectin), each FOA group received 50 mg/d FOA, and RPM was fed at 0.09% of DM intake (DMI). Milk yield and DMI were not affected. Compared with other groups, the percentage of milk protein was greater after the second week of lactation in CoPectin + FOA + RPM. Compared with CoPro or CoPro + FOA, feeding CoPectin + FOA or CoPectin + FOA + RPM led to a greater activity of MAT at 7 to 15 d postcalving. For betaine-homocysteine S-methyltransferase, CoPro together with CoPectin + FOA + RPM cows had greater activity at 7 and 15 d than CoPro + FOA. Overall, supplying FOA with CoPectin or CoPectin plus RPM may enhance S-adenosylmethionine synthesis via MAT in the liver after parturition. As such, these nutrients may impact methylation reactions and liver function.

10.
Animals (Basel) ; 13(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37443972

RESUMO

This study aimed to evaluate the effect of incorporating linseed oil and fish oil in the diet on intake, ruminal fermentation, milk yield, and milk fatty acid profiles in dairy goats. Four crossbred Saanen lactating goats in mid-lactation and milking 1.30 ± 0.28 g/day were used in a 4 × 4 Latin square design. The basal diet contained concentrate and Para grass (C:F 40:60). Treatments included a basal diet without oil supplementation (Ctrl) or with 2.5% linseed oil (LO2.5), 2.5% linseed oil and fish oil (3:2, w/w, LFO2.5), and 4.16% linseed oil and fish oil (3:2, w/w, LFO4.16). Diets had no effect on intake, milk yield, milk composition, or ruminal fermentation (p > 0.05). Compared with Ctrl, lower (p < 0.05) proportions of C10:0-C14:0 in milk fat were observed with LFO4.16. Compared with the Ctrl and linseed oil added alone, feeding LFO4.16 led to a greater (p < 0.01) concentration of C18:1 t11. Compared with both the Ctrl and LO2.5 diets, milk c9,t11 CLA was 4.53 and 2.94 times greater with the LFO4.16 diet. Compared with Ctrl and LO2.5 diets (0.06% and 0.08%), goats fed LFO2.5, and LFO4.16 had greater (p < 0.001) concentrations of C22:6n-3 (0.63% and 0.87%). Overall, the combined data suggested that including 4.16% linseed oil and fish oil in the diet of dairy goats was effective in improving the concentrations of health-promoting fatty acids in milk without affecting milk production.

11.
J Dairy Sci ; 106(8): 5626-5635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291038

RESUMO

Fatty liver is a major metabolic disorder of high-producing dairy cows during the transition period. In nonruminants, it is well established that insulin-induced gene 1 (INSIG1) plays a crucial role in regulating hepatic lipogenesis by controlling the anchoring of sterol regulatory element-binding protein 1 (SREBP-1) on the endoplasmic reticulum along with SREBP cleavage-activating protein (SCAP). Whether the INSIG1-SCAP-SREBP-1c transport axis is affected in cows experiencing fatty liver is unknown. Thus, the aim of this study was to investigate the potential role of INSIG1-SCAP-SREBP-1c axis in the progression of fatty liver in dairy cows. For in vivo experiments, 24 dairy cows at the start of their fourth lactation (median; range 3-5) and 8 d in milk (median; range 4-12 d) were selected into a healthy group [n = 12; triglyceride (TG) content <1%] and a severe fatty liver group (n = 12; TG content >10%) according to their hepatic TG content. Blood samples were collected for detecting serum concentrations of free fatty acids, ß-hydroxybutyrate, and glucose. Compared with healthy cows, cows with severe fatty liver had higher serum concentrations of ß-hydroxybutyrate and free fatty acids and lower concentration of glucose. Liver biopsies were used to detect the status of INSIG1-SCAP-SREBP-1c axis, and the mRNA expression of SREBP-1c-target lipogenic genes acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1). Cows with severe fatty liver had lower protein expression of INSIG1 in the hepatocyte endoplasmic reticulum fraction, greater protein expression of SCAP and precursor SREBP-1c in the hepatocyte Golgi fraction, and greater protein expression of mature SREBP-1c in the hepatocyte nuclear fraction. In addition, the mRNA expression of SREBP-1c-target lipogenic genes ACACA, FASN, and DGAT1 was greater in the liver of dairy cows with severe fatty liver. In vitro experiments were conducted on hepatocytes isolated from 5 healthy 1-d-old female Holstein calves, and hepatocytes from each calf were run independently. First, hepatocytes were treated with 0, 200, or 400 µM palmitic acid (PA) for 12 h. Exogenous PA treatment decreased INSIG1 protein abundance, enhanced the endoplasmic reticulum to Golgi export of SCAP-precursor SREBP-1c complex and the nuclear translocation of mature SREBP-1c, all of which was associated with increased transcriptional activation of lipogenic genes and TG synthesis. Second, hepatocytes were transfected with INSIG1-overexpressing adenovirus for 48 h and treated with 400 µM PA 12 h before the end of transfection. Overexpressing INSIG1 inhibited PA-induced SREBP-1c processing, upregulation of lipogenic genes, and TG synthesis in hepatocytes. Overall, the present in vivo and in vitro results indicated that the low abundance of INSIG1 contributed to SREBP-1c processing and hepatic steatosis in dairy cows. Thus, the INSIG1-SCAP-SREBP-1c axis may be a novel target for treatment of fatty liver in dairy cows.


Assuntos
Doenças dos Bovinos , Fígado Gorduroso , Bovinos , Animais , Feminino , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ácidos Graxos não Esterificados , Ácido 3-Hidroxibutírico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/veterinária , Fígado/metabolismo , Hepatócitos/metabolismo , Triglicerídeos/metabolismo , Insulina/metabolismo , RNA Mensageiro/metabolismo , Glucose/metabolismo , Doenças dos Bovinos/metabolismo
12.
Sci Rep ; 13(1): 10233, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353533

RESUMO

Transportation stress is one of the most serious issues in the management of yak. Previous studies have demonstrated that transport stress is caused by a pro-oxidant state in the animal resulting from an imbalance between pro-oxidant and antioxidant status. In this context, vitamin C has the ability to regulate reactive oxygen species (ROS) synthesis and alleviate oxidative stress. Although this effect of vitamin C is useful in pigs, goats and cattle, the effect of vitamin C on the mitigation of transport stress in yaks is still unclear. The purpose of this study was to better assess the metabolic changes induced by the action of vitamin C in yaks under transportation stress, and whether these changes can influence antioxidant status. After the yaks arrived at the farm, control or baseline blood samples were collected immediately through the jugular vein (VC_CON). Then, 100 mg/kg VC was injected intramuscularly, and blood samples were collected on the 10th day before feeding in the morning (VC). Relative to the control group, the VC injection group had higher levels of VC. Compared with VC_CON, VC injection significantly (P < 0.05) decreased the blood concentrations of ALT, AST, T-Bil, D-Bil, IDBIL, UREA, CRP and LDH. However, VC injection led to greater (P < 0.05) AST/ALT and CREA-S relative to VC_CON. There was no difference (P > 0.05) in GGT, ALP, TBA, TP, ALBII, GLO, A/G, TC, TG, HDL-C, LDL-C, GLU and L-lactate between VC_CON and VC. The injection of VC led to greater (P < 0.05) concentration of MDA, but did not alter (P > 0.05) the serum concentrations of LPO and ROS. The injection of VC led to greater (P < 0.05) serum concentrations of POD, CAT and GSH-PX. In contrast, lower (P < 0.05) serum concentrations of SOD, POD and TPX were observed in VC relative to VC_CON. No difference (P > 0.05) in GSH, GSH-ST and GR was observed between VC_CON and VC. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 156 differential metabolites with P < 0.05 and a variable importance in projection (VIP) score > 1.5 in the VC injection group. The injection of VC resulted in significant changes to the intracellular amino acid metabolism of glutathione, glutamate, cysteine, methionine, glycine, phenylalanine, tyrosine, tryptophan, alanine and aspartate. Overall, our study indicated that VC injections were able to modulate antioxidant levels by affecting metabolism to resist oxidative stress generated during transport.


Assuntos
Antioxidantes , Ácido Ascórbico , Bovinos , Animais , Suínos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Ácido Ascórbico/metabolismo , Estresse Oxidativo , Glutationa/metabolismo
13.
J Agric Food Chem ; 71(19): 7278-7288, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145034

RESUMO

The metabolic stress triggered by negative energy balance after calving induces mitochondrial damage of bovine mammary epithelial cells. Mitochondrial calcium uniporter regulator 1 (MCUR1) is a key protein-coding gene that mediates mitochondrial calcium ion (Ca2+) uptake and plays an important role in mediating homeostasis of mitochondria. The aim of the present study was to elucidate the effects of MCUR1-mediated Ca2+ homeostasis on mitochondria of bovine mammary epithelial cells in response to an inflammatory challenge with lipopolysaccharide (LPS). Exogenous LPS resulted in upregulation of the MCUR1 mRNA and protein abundance, mitochondrial Ca2+ content, and mitochondrial reactive oxygen species (Mito-ROS) content while decreasing mitochondrial membrane potential, causing mitochondrial damage, and increasing the rate of apoptosis. Ryanodine pretreatment attenuated the upregulation of the mitochondrial Ca2+ content and Mito-ROS content induced by LPS. Overexpression of MCUR1 increased the mitochondrial Ca2+ content and Mito-ROS content, while it decreased mitochondrial membrane potential, damaged mitochondria, and induced cell apoptosis. In addition, knockdown of MCUR1 by small interfering RNA attenuated LPS-induced mitochondrial dysfunction by inhibiting mitochondrial Ca2+ uptake. Our results revealed that exogenous LPS induces MCUR1-mediated mitochondrial Ca2+ overload in bovine mammary epithelial cells, which leads to mitochondrial injury. Thus, MCUR1-mediated Ca2+ homeostasis may be a potential therapeutic target against mitochondrial damage induced by metabolic challenges in bovine mammary epithelial cells.


Assuntos
Lipopolissacarídeos , Proteínas Mitocondriais , Animais , Bovinos , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Homeostase , Cálcio/metabolismo
14.
J Agric Food Chem ; 71(22): 8527-8539, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224334

RESUMO

Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.


Assuntos
Ácidos Docosa-Hexaenoicos , Metabolismo dos Lipídeos , Humanos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Epigênese Genética , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
15.
J Dairy Sci ; 106(7): 5127-5145, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225585

RESUMO

Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk. The RPM was fed at a rate of 0.09% or 0.10% of dry matter intake (DMI) during the prepartal and postpartal periods to achieve a target Lys:Met ratio in the metabolizable protein of ∼2.8:1. Muscle biopsies from the hind leg of 10 clinically healthy cows per diet collected at -21, 1, and 21 d relative to calving were used for western blotting of 38 target proteins. Statistical analysis was performed using the PROC MIXED statement of SAS version 9.4 (SAS Institute Inc.) with cow as random effect, whereas diet, time, and diet × time were the fixed effects. Diet × time tended to affect prepartum DMI, with RPM cows consuming 15.2 kg/d and controls 14.6 kg/d. However, diet had no effect on postpartum DMI (17.2 and 17.1 ± 0.4 kg/d for control and RPM, respectively). Milk yield during the first 30 d in milk was also not affected by diet (38.1 and 37.5 ± 1.9 kg/d for control and RPM, respectively). Diet or time did not affect the abundance of several AA transporters or the insulin-induced glucose transporter (SLC2A4). Among evaluated proteins, feeding RPM led to lower overall abundance of proteins associated with protein synthesis (phosphorylated EEF2, phosphorylated RPS6KB1), mTOR activation (RRAGA), proteasome degradation (UBA1), cellular stress responses (HSP70, phosphorylated MAPK3, phosphorylated EIF2A, ERK1/2), antioxidant response (GPX3), and de novo synthesis of phospholipids (PEMT). Regardless of diet, there was an increase in the abundance of the active form of the master regulator of protein synthesis phosphorylated MTOR and the growth-factor-induced serine/threonine kinase phosphorylated AKT1 and PIK3C3, whereas the abundance of a negative regulator of translation (phosphorylated EEF2K) decreased over time. Compared with d 1 after calving and regardless of diet, the abundance of proteins associated with endoplasmic reticulum stress (XBP1 spliced), cell growth and survival (phosphorylated MAPK3), inflammation (transcription factor p65), antioxidant responses (KEAP1), and circadian regulation (CLOCK, PER2) of oxidative metabolism was upregulated at d 21 relative to parturition. These responses coupled with the upregulation of transporters for Lys, Arg, and His (SLC7A1) and glutamate/aspartate (SLC1A3) over time were suggestive of dynamic adaptations in cellular functions. Overall, management approaches that could take advantage of this physiological plasticity may help cows make a smoother transition into lactation.


Assuntos
Antioxidantes , Metionina , Feminino , Bovinos , Animais , Metionina/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rúmen/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lactação/fisiologia , Leite/metabolismo , Dieta/veterinária , Período Pós-Parto , Racemetionina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais
16.
J Dairy Sci ; 106(7): 5146-5164, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225589

RESUMO

Mitochondrial homeostasis is closely associated with cellular homeostasis process, whereas mitochondrial dysfunction contributes to apoptosis and mitophagy. Hence, analyzing the mechanism of lipopolysaccharide (LPS)-caused mitochondrial damage is necessary to understand how cellular homeostasis is maintained in bovine hepatocytes. Mitochondria-associated membranes (MAM), a connection between endoplasmic reticulum (ER) and mitochondria, is important to control mitochondrial function. To investigate the underlying mechanisms of the LPS-caused mitochondrial dysfunction, hepatocytes isolated from dairy cows at ∼160 d in milk (DIM) were pretreated with the specific inhibitors of adenosine 5'-monophosphate-activated protein kinase (AMPK), ER stress, RNA-activated protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), c-Jun N-terminal kinase, and autophagy followed by a 12 I1/4g/mL LPS treatment. The results showed that inhibiting ER stress with 4-phenylbutyric acid decreased the levels of autophagy and mitochondrial damage with AMPK inactivation in LPS-treated hepatocytes. The AMPK inhibitor compound C pretreatment alleviated LPS-induced ER stress, autophagy and mitochondrial dysfunction by regulating the expression of MAM-related genes, such as mitofusin 2 (MFN2), PERK, and IRE1α. Moreover, inhibiting PERK and IRE1α mitigated autophagy and mitochondrial dynamic disruption by regulating the MAM function. Additionally, blocking c-Jun N-terminal kinase, the downstream sensor of IRE1α, could reduce the levels of autophagy and apoptosis and restore the balance of mitochondrial fusion and fission by modulating the B cell leukemia 2 (BCL-2)/BCL-2 interacting protein 1 (BECLIN1) complex in the LPS-treated bovine hepatocytes. Furthermore, autophagy blockage with chloroquine could intervene in LPS-caused apoptosis to restore mitochondrial function. Collectively, these findings suggest that the AMPK-ER stress axis is involved in the LPS-caused mitochondrial dysfunction by mediating the MAM activity in bovine hepatocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Lipopolissacarídeos , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852676

RESUMO

Physiological and environmental stresses such as the transition into lactation and heat load contribute to gastrointestinal tract (GIT) dysfunction. The nonruminant gastrointestinal tract has mechanisms to cope with pro-oxidant and pro-inflammatory stressors arising from the gut lumen or within intestinal cells. One-carbon metabolism (OCM) contributes to anti-oxidant capacity via the production of glutathione (GSH) and taurine, and the synthesis of phospholipid, creatine, and the osmolyte glycinebetaine among others. A multipronged approach was used to assess the biological relevance of OCM and closely-related pathways on GIT function in dairy cows. Ruminal papillae (Rum) and scrapings from duodenum (Duo), jejunum (Jej), and ileum (Ile) were collected at slaughter from eight multiparous Holstein cows averaging 128 ± 12 d in milk and producing 39 ± 5 kg/d. A MIXED model ANOVA with preplanned orthogonal contrasts was used for statistical analysis. Methionine adenosyl transferase 1 activity (MAT) was ~10-fold greater (P < 0.01) and cystathionine ß-synthase activity doubled in Rum vs. small intestine. Total glutathione peroxidase (GPX) activity was greatest (P = 0.03) in Ile, but similar to Rum. Activity and mRNA abundance of betaine-homocysteine S-methyltransferase were undetectable. There was a 2.5-fold greater protein abundance of GPX1 (P < 0.01) and a ~2-fold greater abundance of GPX3 (P < 0.01) in Rum vs. small intestine. Among the various amino acids (AA) with roles in OCM or closely-related pathways (e.g. creatine synthesis), concentrations of arginine, aspartate, glutamine, methionine, and serine were lower (P < 0.01) in Rum vs. small intestine. Unlike AA, concentrations of OCM-related intermediates S-5'-adenosyl-homocysteine (SAH), glycinebetaine, carnitine, creatine (CRE), and cysteinesulfinic acid were greater (P < 0.01) while taurine was lower in Rum vs. small intestine. Intermediates of the folate cycle were undetectable. The fact that S-adenosylmethionine (SAM) was undetectable while MAT activity and SAH were greater in Rum suggested that availability of SAM (a methyl donor) is a key determinant of flux through the folate and methionine cycles in the GIT. Except for adenosine, concentrations of glutamate, glycine, α-ketoglutarate, hypotaurine, and GSH were lowest in Ile. Together, the data underscored unique differences in activity of one-carbon metabolism and related pathways across sections of the GIT.


The gastrointestinal tract serves a number of essential functions in the animal and exposure to physiological and environmental stressors can lead to disruption of its barrier function and compromise nutrient absorption. In nonruminants, mechanisms to cope with pro-oxidant and pro-inflammatory stressors are essential for maintaining gut function. One-carbon metabolism contributes to anti-oxidant capacity via the production of glutathione and taurine, synthesis of phospholipids, energy-producing compounds, and the osmolyte glycinebetaine among others. A multipronged approach was used to assess the biological relevance of one-carbon metabolism and closely-related pathways in the rumen and small intestine of lactating dairy cows. Enzyme activities, mRNA and protein abundance, and metabolite profiling revealed unique patterns in the rumen versus small intestine. Methyl donor synthesis, transsulfuration, glutathione synthesis, and glutathione peroxidase activity are active mechanisms in ruminal tissue. Research targeting the alteration of these pathways through specific nutrients during stressful periods such as the transition into lactation, weaning, and heat load is warranted.


Assuntos
Dieta , Lactação , Feminino , Bovinos , Animais , Dieta/veterinária , Creatina/metabolismo , Metionina/metabolismo , Betaína , Antioxidantes/metabolismo , Leite/metabolismo , Aminoácidos/metabolismo , Glutationa/metabolismo , Duodeno/metabolismo , Ácido Fólico/metabolismo , Mucosa Intestinal/metabolismo , Carbono/metabolismo , Rúmen/metabolismo
18.
J Dairy Sci ; 106(4): 2700-2715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36823013

RESUMO

Fatty liver (i.e., hepatic lipidosis) is a prevalent metabolic disorder in dairy cows during the transition period, characterized by excess hepatic accumulation of triglyceride (TG), tissue dysfunction, and cell death. Detailed pathological changes, particularly hepatic fibrosis, during fatty liver remain to be determined. Liver fibrosis occurs as a consequence of liver damage, resulting from the excessive accumulation of extracellular matrix, which distorts the architecture of the normal liver, compromising its normal synthetic and metabolic functions. Thus, we aimed to investigate liver fibrosis status and its potential causal factors including oxidative stress, hepatocyte apoptosis, and production of inflammatory cytokines in the liver of cows with fatty liver. Forty-five dairy cows (parity, 3-5) were selected, and liver biopsy and blood were collected on the second week postpartum (days in milk, 10-14 d). On the basis of the degree of lipid accumulation in liver, selected cows were categorized into normal (n = 25; TG <1% wet wt), mild fatty liver (n = 15; 1% ≤ TG <5% wet wt), and moderate fatty liver (n = 5; 5% ≤ TG <10% wet wt). Compared with normal cows, blood concentrations of nonesterified fatty acids and ß-hydroxybutyrate, along with alanine aminotransferase and aspartate aminotransferase activities, were greater in the cows with fatty liver (mild and moderate). Hepatic extracellular matrix deposition, as indicated by Picrosirius red staining, was greater in cows with fatty liver than those with normal ones. In addition, we observed an increased proportion of collagen type I fiber in extracellular matrix with increased lipid accumulation in the liver. Compared with normal cows, the area of α-smooth muscle actin (α-SMA)-positive staining along with the mRNA abundance of collagen type I α 1 (COL1A1), ACTA2 (gene encoding α-SMA), and transforming growth factor-ß (TGFB) were greater in cows with fatty liver. Compared with normal cows, hepatic contents of malondialdehyde, glutathione disulfide, and 8-isoprostane were greater, whereas total antioxidant capacity, the hepatic content of glutathione, and activities of antioxidant indicators, including superoxide dismutase, glutathione peroxidase, and catalase, were lower in cows with fatty liver. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and abundance of apoptosis-related molecules BAX, CASP3, CASP8, and CASP9 were greater in cows with fatty liver. However, mRNA abundance of the anti-apoptotic gene BCL2 did not differ. The mRNA abundance of pro-inflammatory cytokines including tumor necrosis factor-α (TNFA), interleukin-1ß (IL1B), and interleukin-6 (IL6) was greater in the liver of cows with fatty liver. Overall, the present study indicated that fibrosis is a common pathological response to liver damage and is associated with oxidative stress, hepatocyte death, and inflammation.


Assuntos
Doenças dos Bovinos , Fígado Gorduroso , Feminino , Bovinos , Animais , Antioxidantes/metabolismo , Colágeno Tipo I/metabolismo , Fígado/metabolismo , Fígado Gorduroso/veterinária , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/veterinária , Ácidos Graxos não Esterificados , Triglicerídeos/metabolismo , Citocinas/metabolismo , Lactação
19.
Free Radic Biol Med ; 194: 172-183, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464026

RESUMO

Increased metabolic stress during early lactation results in damage of mitochondria and inflammatory responses in bovine mammary epithelial cells, both of which could be aggravated by inhibition of mitophagy. PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy is essential in the removal of damaged mitochondria and the regulation of inflammatory responses. The aim of the present study was to elucidate the role of PINK1-mediated mitophagy on mitochondrial damage and inflammatory responses in bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). Exogenous LPS activated mitophagy and led to lower protein abundance of oxidative phosphorylation (OXPHOS) complexes (COI-V) and lower oxygen consumption rate (OCR) along with increased mitochondrial reactive oxygen species (Mito-ROS) content. These effects were also associated with increased protein abundance of Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) in a time-dependent manner. Pretreatment with 3-Methyladenine (3-MA) or knockdown of PINK1 aggravated the downregulation of COI-V protein abundance, the increase in Mito-ROS content, and the protein abundance of NLRP3, Cleaved-Caspase-1 and IL-1ß induced by LPS. Overexpression of PINK1 activated mitophagy and alleviated LPS-induced NLRP3 inflammasome activation by reducing Mito-ROS production. Overall, the data suggested that PINK1-mediated mitophagy is a crucial anti-inflammatory mechanism that removes damaged mitochondria in bovine mammary epithelial cells experiencing an increased inflammatory load.


Assuntos
Lipopolissacarídeos , Mitofagia , Feminino , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Autofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Células Epiteliais/metabolismo , Inflamassomos/metabolismo
20.
J Dairy Sci ; 106(2): 1315-1329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494223

RESUMO

Excessive inflammation in bovine mammary endothelial cells (BMEC) due to mastitis leads to disease progression and eventual culling of cattle. Sirtuin 3 (SIRT3), a mitochondrial deacetylase, downregulates pro-inflammatory cytokines in BMEC exposed to high concentrations of nonesterified fatty acids by blunting nuclear factor-κB (NFκB) signaling. In nonruminants, SIRT3 is under the control of PGC1α, a transcriptional cofactor. Specific aims were to study (1) the effect of SIRT3 on inflammatory responses of lipopolysaccharide (LPS)-challenged bovine mammary epithelial cells (bovine mammary alveolar cells-T, MAC-T) models, and (2) the role of PGC1α in the attenuation of NFκB signaling via SIRT3. To address these objectives, first, MAC-T cells were incubated in triplicate with 0, 50, 100, 150, or 200 µg/mL LPS (derived from Escherichia coli O55:B5) for 12 h with or without a 2-h incubation of the NFκB inhibitor ammonium pyrrolidine dithiocarbamate (APDC, 10 µM). Second, SIRT3 was overexpressed using adenoviral expression (Ad-SIRT3) at different multiplicity of infection (MOI) for 6 h followed by a 12 h incubation with 150 µg/mL LPS. Third, cells were treated with the PGC1α agonist ZLN005 (10 µg/mL) for 24 h and then challenged with 150 µg/mL LPS for 12 h. Fourth, cells were initially treated with the PGC1α inhibitor SR-18292 (100 µM) for 6 h followed by a 6-h culture with or without 50 MOI Ad-SIRT3 and a challenge with 150 µg/mL LPS for 12 h. Data were analyzed using one-way ANOVA with subsequent Bonferroni correction. Linear and quadratic contrasts were used to determine dose-responses to LPS. There were linear and quadratic effects of LPS dosage on cell viability. Incubation with 150 and 200 µg/mL LPS for 12 h decreased cell viability to 78.6 and 34.9%, respectively. Compared with controls, expression of IL1B, IL6, and TNFA was upregulated by 5.2-, 5.9-, and 2.7-fold with 150 µg/mL LPS; concentrations of IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in cell medium also increased. Compared with the LPS group, LPS+APDC increased cell viability and reversed the upregulation of IL1B, IL6, and TNFA expression. However, mRNA and protein abundance of SIRT3 decreased linearly with increasing LPS dose. Ad-SIRT3 infection (50 MOI) reduced IL1B, IL6, and TNFA expression and also their concentrations in cell medium, and decreased pNFκB P65/NFκB P65 ratio and nuclear abundance of NFκB P65. The PGC1α agonist increased SIRT3 expression, whereas it decreased cytokine expression, pNFκB P65/NFκB P65 ratio, and prevented NFκB P65 nuclear translocation. Contrary to the agonist, the PGC1α inhibitor had opposite effects, and elevated the concentrations of IL-1ß, IL-6, and TNF-α in cell medium. Overall, data suggested that SIRT3 activity could attenuate LPS-induced inflammatory responses in mammary cells via alterations in the PGC1α-NFκB pathway. As such, there may be potential benefits for targeting SIRT3 in vivo to help prevent or alleviate negative effects of mastitis.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Sirtuína 3 , Animais , Bovinos , Feminino , Doenças dos Bovinos/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Glândulas Mamárias Animais/metabolismo , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Mastite Bovina/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA