Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Chemother Pharmacol ; 94(1): 79-87, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456955

RESUMO

PURPOSE: An oral docetaxel formulation boosted by the Cytochrome P450 (CYP) 3 A inhibitor ritonavir, ModraDoc006/r, is currently under clinical investigation. Based on clinical data, the incidence of grade 1-2 diarrhea is increased with this oral docetaxel formulation compared to the conventional intravenous administration. Loperamide, a frequently used diarrhea inhibitor, could be added to the regimen as symptomatic treatment. However, loperamide is also a substrate of the CYP3A enzyme, which could result in competition between ritonavir and loperamide for this protein. Therefore, we were interested in the impact of coadministered loperamide on the pharmacokinetics of ritonavir-boosted oral docetaxel. METHODS: We administered loperamide simultaneously or with an 8-hour delay to humanized CYP3A4 mice (with expression in liver and intestine) receiving oral ritonavir and docetaxel. Concentrations of docetaxel, ritonavir, loperamide and two of its active metabolites were measured. RESULTS: The plasma exposure (AUC and Cmax) of docetaxel was not altered during loperamide treatment, nor were the ritonavir plasma pharmacokinetics. However, the hepatic and intestinal dispositions of ritonavir were somewhat changed in the simultaneous, but not 8-hour loperamide treatment groups, possibly due to loperamide-induced delayed drug absorption. The pharmacokinetics of loperamide itself did not seem to be influenced by ritonavir. CONCLUSION: These results suggest that delayed loperamide administration can be added to ritonavir-boosted oral docetaxel treatment, without affecting the overall systemic exposure of docetaxel.


Assuntos
Citocromo P-450 CYP3A , Docetaxel , Interações Medicamentosas , Loperamida , Ritonavir , Taxoides , Ritonavir/administração & dosagem , Ritonavir/farmacocinética , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Loperamida/administração & dosagem , Loperamida/farmacocinética , Animais , Camundongos , Citocromo P-450 CYP3A/metabolismo , Administração Oral , Taxoides/farmacocinética , Taxoides/administração & dosagem , Humanos , Distribuição Tecidual , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacologia , Área Sob a Curva , Antidiarreicos/administração & dosagem , Antidiarreicos/farmacocinética , Camundongos Transgênicos
2.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527694

RESUMO

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Encéfalo , Indazóis , Morfolinas , Inibidores de Proteínas Quinases , Pirazinas , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Camundongos Knockout , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Administração Oral
3.
Mol Pharm ; 21(4): 1952-1964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423793

RESUMO

Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Taxoides , Animais , Humanos , Masculino , Camundongos , Carboxilesterase/metabolismo , Docetaxel , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ritonavir , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
4.
Biomed Chromatogr ; 37(11): e5720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596864

RESUMO

We developed and validated an assay utilizing a liquid chromatography-tandem mass spectrometry technique to quantify the KRAS inhibitor adagrasib in mouse plasma and seven tissue-related matrices. The straightforward protein precipitation technique was selected to extract adagrasib and the internal standard salinomycin from the matrices. Gradient elution of acetonitrile and water modified with 0.5% (v/v) ammonium hydroxide and 0.02% (v/v) acetic acid on a C18 column at a flow rate of 0.6 ml/min was applied to separate the analytes. Both adagrasib and salinomycin were detected with a triple quadrupole mass spectrometer with positive electrospray ionization in a selected reaction monitoring mode. A linear calibration range of 2-2,000 ng/ml of adagrasib was demonstrated during the validation. In addition, the reported precision values (intra- and inter-day) were between 3.5 and 14.9%, while the accuracy values were 85.5-111.0% for all tested levels in all investigated matrices. Adagrasib in mouse plasma was reported to have good stability at room temperature, while adagrasib in tissue-related matrices was stable on ice for up to 4 h (matrix dependent). Finally, this method was successfully applied to determine the pharmacokinetic profile and tissue distribution of adagrasib in wild-type mice.

5.
Biomed Pharmacother ; 166: 115304, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586117

RESUMO

Adagrasib (Krazati™) is the second FDA-approved specific KRASG12C inhibitor for non-small cell lung cancer (NSCLC) patients harboring this mutation. The impact of the drug efflux transporters ABCB1 and ABCG2, and the drug-metabolizing enzymes CYP3A and carboxylesterase 1 (CES1) on the pharmacokinetics of oral adagrasib were studied using genetically modified mouse models. Adagrasib was potently transported by human ABCB1 and modestly by mouse Abcg2 in vitro. In Abcb1a/b-/- and Abcb1a/b;Abcg2-/- mice, the brain-to-plasma ratios were enhanced by 33- and 55-fold, respectively, compared to wild-type mice, whereas ratios in Abcg2-/- mice remained unchanged. The influence of ABC transporters was completely reversed by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, increasing the brain penetration in wild-type mice by 41-fold while no signs of acute CNS toxicity were observed. Tumor ABCB1 overexpression may thus confer adagrasib resistance. Whereas the ABC transporters did not affect adagrasib plasma exposure, CYP3A and Ces1 strongly impacted its apparent oral availability. The plasma AUC0-8 h was significantly enhanced by 2.3-fold in Cyp3a-/- compared to wild-type mice, and subsequently 4.3-fold reduced in transgenic CYP3A4 mice, indicating substantial CYP3A-mediated metabolism. Adagrasib plasma exposure was strongly reduced in Ces1-/- compared to wild-type mice, but tissue exposure was slightly increased, suggesting that adagrasib binds to plasma Ces1c in mice and is perhaps metabolized by Ces1. This binding could complicate interpretation of mouse studies, especially since humans lack circulating CES1 enzyme(s). Our results may be useful to further optimize the clinical safety and efficacy of adagrasib, and give more insight into potential drug-drug interactions risks.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Cães , Humanos , Camundongos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Madin Darby de Rim Canino , Camundongos Knockout , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
6.
J Pharm Biomed Anal ; 235: 115612, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37557065

RESUMO

We have successfully developed and validated a bioanalytical assay using liquid chromatography tandem mass spectrometry to simultaneously quantify the first approved KRASG12C inhibitor sotorasib and its major circulating metabolite (M24) in various mouse matrices. M24 was synthesized in-house via low-pH hydrolysis. We utilized a fast and efficient protein precipitation method in a 96-well plate format to extract both analytes from biological matrices. Erlotinib was selected as the internal standard in this assay. Gradient elution using methanol and 0.1 % formic acid in water (v/v) was applied on an Acquity UPLC BEH C18 column to separate all analytes. Sotorasib, M24, and erlotinib were detected with a triple quadrupole mass spectrometer in positive electrospray ionization in multiple reaction monitoring mode. During the validation and sample quantification, a linear calibration range was observed for both sotorasib and M24 in a range of 4 - 4000 nM and 1 - 1000 nM, respectively. The %bias and %CV (both intra- and inter-day) for all tested levels in all investigated matrices were lower than 15 % as required by the guidelines. Sotorasib had a rather short room temperature stability in mouse plasma for up to 8 h compared to M24 which was stable up to 16 h at room temperature. This method has been successfully applied to measure sotorasib and M24 in several mouse matrices from three different mouse strains. We can conclude that the plasma exposure of sotorasib in mice is limited via human CYP3A4- and mouse Cyp3a-mediated metabolism of sotorasib into M24.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Espectrometria de Massas em Tandem , Camundongos , Humanos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cloridrato de Erlotinib , Reprodutibilidade dos Testes
7.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344602

RESUMO

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Assuntos
Heroína , Morfina , Camundongos , Animais , Heroína/metabolismo , Heroína/farmacologia , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
8.
Pharmacol Res ; 178: 106137, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35192958

RESUMO

Sotorasib (Lumakras™) is the first FDA-approved KRASG12C inhibitor for treatment of patients with non-small cell lung cancer (NSCLC) carrying this mutation. Using genetically modified mouse models, we studied the influence of the efflux transporters ABCB1 and ABCG2, the OATP1a/1b uptake transporters, and the CYP3A drug-metabolizing enzyme complex on the plasma pharmacokinetics and tissue distribution of oral sotorasib. In vitro, sotorasib was a potent substrate for human ABCB1 and a modest substrate for mouse Abcg2, but not for human ABCG2. In vivo, the brain-to-plasma ratio of sotorasib (40 mg/kg) was highly increased in Abcb1a/1b-/- (5.9-fold) and Abcb1a/1b;Abcg2-/- (7.6-fold) compared to wild-type mice, but not in single Abcg2-/- mice. Upon coadministering elacridar, an ABCB1/ABCG2 inhibitor, sotorasib brain accumulation increased 7.5-fold, approaching the levels observed in Abcb1a/1b-deficient mice. No acute CNS toxicity emerged upon boosting of the sotorasib exposure. In Oatp1a/1b-deficient mice, we observed a 2-fold reduction in liver disposition compared to wild-type mice, although these uptake transporters had no noticeable impact on sotorasib plasma exposure. However, plasma exposure was limited by mouse Cyp3a and human CYP3A4, as the AUC0-4 h in Cyp3a-/- mice was increased by 2.5-fold compared to wild-type mice, and subsequently strongly decreased (by 3.9-fold) in Cyp3aXAV mice transgenically overexpressing human CYP3A4 in liver and intestine. Collectively, the oral availability of sotorasib was markedly limited by CYP3A and possibly also by ABCB1 and OATP1a/b, whereas its brain accumulation was strongly restricted by ABCB1. The obtained results may help to further optimize the safety and efficacy of sotorasib in clinical use.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Piperazinas , Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Pirimidinas
9.
Pharmacol Res ; 178: 105954, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34700018

RESUMO

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Aminopiridinas , Benzimidazóis , Citocromo P-450 CYP3A , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo
10.
Mol Pharm ; 18(12): 4371-4384, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730366

RESUMO

Niraparib (Zejula), a selective oral PARP1/2 inhibitor registered for ovarian, fallopian tube, and primary peritoneal cancer treatment, is under investigation for other malignancies, including brain tumors. We explored the impact of the ABCB1 and ABCG2 multidrug efflux transporters, the OATP1A/1B uptake transporters, and the CYP3A drug-metabolizing complex on oral niraparib pharmacokinetics, using wild-type and genetically modified mouse and cell line models. In vitro, human ABCB1 and mouse Abcg2 transported niraparib moderately. Compared to wild-type mice, niraparib brain-to-plasma ratios were 6- to 7-fold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- but not in single Abcg2-/- mice, while niraparib plasma exposure at later time points was ∼2-fold increased. Niraparib recovery in the small intestinal content was markedly reduced in the Abcb1a/1b-deficient strains. Pretreatment of wild-type mice with oral elacridar, an ABCB1/ABCG2 inhibitor, increased niraparib brain concentration and reduced small intestinal content recovery to levels observed in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deletion did not significantly affect niraparib oral bioavailability or liver distribution but decreased metabolite M1 liver uptake. No significant effects of mouse Cyp3a ablation were observed, but overexpression of transgenic human CYP3A4 unexpectedly increased niraparib plasma exposure. Thus, Abcb1 deficiency markedly increased niraparib brain distribution and reduced its small intestinal content recovery, presumably through reduced biliary excretion and/or decreased direct intestinal excretion. Elacridar pretreatment inhibited both processes completely. Clinically, the negligible role of OATP1 and CYP3A could be advantageous for niraparib, diminishing drug-drug interaction or interindividual variation risks involving these proteins. These findings may support the further clinical development and application of niraparib.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Encéfalo/metabolismo , Indazóis/farmacocinética , Intestinos/metabolismo , Piperidinas/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Acridinas/farmacologia , Animais , Transporte Biológico , Citocromo P-450 CYP3A/fisiologia , Cães , Células Madin Darby de Rim Canino , Camundongos , Tetra-Hidroisoquinolinas/farmacologia , Distribuição Tecidual
11.
Artigo em Inglês | MEDLINE | ID: mdl-33957355

RESUMO

Sotorasib is a KRAS inhibitor with promising anticancer activity in phase I clinical studies. This compound is currently under further clinical evaluation as monotherapy and combination therapy against solid tumors. In this study, a liquid chromatography-tandem mass spectrometric method to quantify sotorasib in mouse plasma and eight tissue-related matrices (brain, liver, spleen, kidney, small intestine, small intestine content, lung, and testis homogenates) was developed and validated. Protein precipitation using acetonitrile was utilized in 96-well format to extract sotorasib and erlotinib (internal standard) from mouse plasma and tissue homogenates. Separation of the analytes was performed on an Acquity UPLC® BEH C18 column by gradient elution of methanol and 0.1% formic acid in water at a flow rate of 0.6 ml/min. Sotorasib was detected by a triple quadrupole mass spectrometer with positive electrospray ionization in selected reaction monitoring mode. A linear calibration range of 2-2,000 ng/ml of sotorasib was achieved during the validation. Accuracy values were in the range of 90.7-111.4%, and precision values (intra- and interday) were between 1.7% and 9.2% for all tested levels in all investigated matrices. The method was successfully applied to investigate the plasma pharmacokinetics and tissue accumulation of sotorasib in female wild-type mice.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Piperazinas/sangue , Piridinas/sangue , Pirimidinas/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Feminino , Modelos Lineares , Camundongos , Piperazinas/análise , Piperazinas/química , Piperazinas/farmacocinética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/análise , Piridinas/química , Piridinas/farmacocinética , Pirimidinas/análise , Pirimidinas/química , Pirimidinas/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA