Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(1): 171-182.e8, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134934

RESUMO

Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.


Assuntos
Actinas , Actomiosina , Animais , Actinas/metabolismo , Adesão Celular/fisiologia , Actomiosina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas do Citoesqueleto , Miosinas
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443153

RESUMO

The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositóis/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Axônios/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
3.
Methods Cell Biol ; 128: 223-241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997350

RESUMO

Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking, and cell motility.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Xenopus laevis/metabolismo , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Fluorescência/métodos , Óvulo/metabolismo , Ligação Proteica/fisiologia , Extratos de Tecidos/metabolismo , Proteínas de Xenopus/metabolismo
4.
Nat Struct Mol Biol ; 18(5): 577-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21516096

RESUMO

In Escherichia coli, the pole-to-pole oscillation of the Min proteins directs septum formation to midcell, which is required for symmetric cell division. In vitro, protein waves emerge from the self-organization of MinD, a membrane-binding ATPase, and its activator MinE. For wave propagation, the proteins need to cycle through states of collective membrane binding and unbinding. Although MinD presumably undergoes cooperative membrane attachment, it is unclear how synchronous detachment is coordinated. We used confocal and single-molecule microscopy to elucidate the order of events during Min wave propagation. We propose that protein detachment at the rear of the wave, and the formation of the E-ring, are accomplished by two complementary processes: first, local accumulation of MinE due to rapid rebinding, leading to dynamic instability; and second, a structural change induced by membrane-interaction of MinE in an equimolar MinD-MinE (MinDE) complex, which supports the robustness of pattern formation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Divisão Celular , Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Modelos Biológicos , Estabilidade Proteica
5.
Cell ; 138(3): 502-13, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665972

RESUMO

In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.


Assuntos
Cromatina/química , Fuso Acromático/química , Animais , Extratos Celulares , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
Science ; 320(5877): 789-92, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18467587

RESUMO

In the bacterium Escherichia coli, the Min proteins oscillate between the cell poles to select the cell center as division site. This dynamic pattern has been proposed to arise by self-organization of these proteins, and several models have suggested a reaction-diffusion type mechanism. Here, we found that the Min proteins spontaneously formed planar surface waves on a flat membrane in vitro. The formation and maintenance of these patterns, which extended for hundreds of micrometers, required adenosine 5'-triphosphate (ATP), and they persisted for hours. We present a reaction-diffusion model of the MinD and MinE dynamics that accounts for our experimental observations and also captures the in vivo oscillations.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Trifosfato de Adenosina/fisiologia , Proteínas de Bactérias , Sistema Livre de Células , Proteínas do Citoesqueleto , Difusão , Modelos Biológicos , Oscilometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA