Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289793

RESUMO

Medical personnel represent the largest group of workers occupationally exposed to ionizing radiation. Although the health risks associated with occupational exposure to low doses of ionizing radiation in the medical field have been investigated in several national cohorts, no study has been conducted in France to date. The ORICAMs (Occupational Radiation Induced Cancer in Medical staff) cohort is a nationwide French longitudinal cohort of medical workers exposed to ionizing radiation aiming to investigate the risk of radiation-associated cancer and non-cancer mortality. The ORICAMs cohort was set up in 2011 and includes all medical personnel monitored for ionizing radiation exposure with at least one dosimetric record in the SISERI database (the national registry for monitoring ionizing radiation exposure in workers) over the period 2002-2012. Causes of death were abstracted from death certificates and coded according to ICD-10. The follow-up ended on 31/12/2013. Standardized mortality ratios (SMRs) were calculated by cause of death to compare the mortality in the cohort to that in the French population, by gender, age group and calendar period. Among the 164,015 workers included in the cohort (60% women) a total of 1,358 deaths (892 in male and 466 in female) were reported. The observed number of all-cause deaths was significantly lower than expected based on national rates in both male (SMR = 0.35; 95% CI: 0.33, 0.38; ndeaths = 892) and female (SMR = 0.41; 95% CI: 0.38, 0.45; ndeaths = 466). This analysis leads to the conclusion that mortality in French workers exposed to medical radiation is significantly lower than the national reference rates. However, these results based on a comparative analysis with national rates may be impacted by the healthy worker effect towards low SMRs, and do not enable to establish a potential relationship between occupational exposure and mortality risk, even if we may suspect an impact of high SES of these professionals on the observed decreased mortality. Thus, further dose-response analyses based on individual ionizing radiation exposure and job's type will be conducted to characterize correlation between risk of cancer mortality and occupational exposure.


Assuntos
Neoplasias Induzidas por Radiação , Doenças Profissionais , Exposição Ocupacional , Exposição à Radiação , Humanos , Masculino , Feminino , Estudos de Coortes , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Pessoal de Saúde , Exposição Ocupacional/efeitos adversos
2.
Int J Radiat Biol ; 99(9): 1332-1342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318723

RESUMO

This article summarizes a Symposium on 'Radiation risks of the central nervous system' held virtually at the 67th Annual Meeting of the Radiation Research Society, 3-6 October 2021. Repeated low-dose radiation exposure over a certain period could lead to reduced neuronal proliferation, altered neurogenesis, neuroinflammation and various neurological complications, including psychological consequences, necessitating further research in these areas. Four speakers from radiation biology, genetics and epidemiology presented the latest data from their studies seeking insights into this important topic. This symposium highlighted new and important directions for further research on mental health disorders, neurodegenerative conditions and cognitive impairment. Future studies will examine risks of mental and behavioral disorders and neurodegenerative diseases following protracted radiation exposures to better understand risks of occupational exposures as well as provide insights into risks from exposures to galactic cosmic rays.


Assuntos
Radiação Cósmica , Exposição Ocupacional , Exposição à Radiação , Exposição Ocupacional/efeitos adversos , Sistema Nervoso Central
3.
Sci Rep ; 12(1): 16209, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171442

RESUMO

Many studies on ionizing radiation (IR) exposure during childhood have shown deleterious effects on the central nervous system (CNS), however results regarding adult exposure are inconsistent, and no systematic reviews have been performed. The objectives are to synthesize the findings and draw evidence-based conclusions from epidemiological studies on the risk of benign and malignant brain and CNS tumors in humans exposed to low-to-moderate doses (< 0.5 Gy) of IR during adulthood/young adulthood. A systematic literature search of four electronic databases, supplemented by a hand search, was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled excess relative risk (ERRpooled) was estimated using a random effect model. Eighteen publications were included in the systematic review and twelve out of them were included in a meta-analysis. The following IR sources were considered: atomic bombs, occupational, and environmental exposures. No significant dose-risk association was found for brain/CNS tumors (ERRpooled at 100 mGy = - 0.01; 95% CI: - 0.05, 0.04). Our systematic review and meta-analysis did not show any association between exposure to low-to-moderate doses of IR and risk of CNS tumors. Further studies with histological information and precise dose assessment are needed.


Assuntos
Neoplasias do Sistema Nervoso Central , Armas Nucleares , Exposição Ocupacional , Exposição à Radiação , Adulto , Neoplasias do Sistema Nervoso Central/epidemiologia , Neoplasias do Sistema Nervoso Central/etiologia , Exposição Ambiental , Humanos , Exposição Ocupacional/efeitos adversos , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Adulto Jovem
4.
Brain Sci ; 12(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892428

RESUMO

Background: High-dose ionizing radiation (IR) (>0.5 Gy) is an established risk factor for cognitive impairments, but this cannot be concluded for low-to-moderate IR exposure (<0.5 Gy) in adulthood as study results are inconsistent. The objectives are to summarize relevant epidemiological studies of low-to-moderate IR exposure in adulthood and to assess the risk of non-cancerous CNS diseases. Methods: A systematic literature search of four electronic databases was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled standardized mortality ratios, relative risks, and excess relative risks (ERR) were estimated with a random effect model. Results: Forty-five publications were included in the systematic review, including thirty-three in the quantitative meta-analysis. The following sources of IR-exposure were considered: atomic bomb, occupational, environmental, and medical exposure. Increased dose-risk relationships were found for cerebrovascular diseases incidence and mortality (ERRpooled per 100 mGy = 0.04; 95% CI: 0.03−0.05; ERRpooled at 100 mGy = 0.01; 95% CI: −0.00−0.02, respectively) and for Parkinson's disease (ERRpooled at 100 mGy = 0.11; 95% CI: 0.06−0.16); Conclusions: Our findings suggest that adult low-to-moderate IR exposure may have effects on non-cancerous CNS diseases. Further research addressing inherent variation issues is encouraged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA