Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6568): 684-685, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735229

RESUMO

Adenosine fine-tunes the fate of nascent synapses in brain development.


Assuntos
Sinapses
2.
Cell Rep ; 36(9): 109574, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469732

RESUMO

Neuroinflammation in patients with Alzheimer's disease (AD) and related mouse models has been recognized for decades, but the contribution of the recently described meningeal immune population to AD pathogenesis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-17 (IL-17)-producing cells, mostly γδ T cells, in the brain and the meninges of female, but not male, mice, concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects precede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17 in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a finely regulated balance of "inflammatory" cytokines derived from the meningeal immune system.


Assuntos
Doença de Alzheimer/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Cognição , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Doenças Neuroinflamatórias/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-17/antagonistas & inibidores , Linfócitos Intraepiteliais/efeitos dos fármacos , Masculino , Memória de Curto Prazo , Camundongos da Linhagem 129 , Camundongos Transgênicos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/psicologia , Plasticidade Neuronal , Sinapses/efeitos dos fármacos , Sinapses/patologia
3.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34210659

RESUMO

Stereotaxic access to brain areas underneath the superior sagittal sinus (SSS) is notoriously challenging. As a major drainage vessel, covering the whole extension of the sagittal fissure, the SSS impedes direct bilateral access to underlying regions for recording and stimulation probes, drug-delivery cannulas, and injection devices. We now describe a new method for transection and retraction of the SSS in rats, that allows the accurate placement of microinjection devices, or chronic electrode probes, while avoiding hemorrhage and the ensuing deleterious consequences for local structures, animal health, and behavior. To demonstrate the feasibility of this approach we evaluated its consequences acutely during surgery, and thereafter during surgical survival, recovery, behavioral testing, as well as postmortem analysis of histologic impact in the related brain structures of male rats. This method provides a new approach enabling direct access for manipulation and recording of activity in brain areas previously obstructed by the SSS.


Assuntos
Roedores , Seio Sagital Superior , Animais , Encéfalo , Masculino , Ratos
4.
Cells ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708189

RESUMO

The pathological condition of neuroinflammation is caused by the activation of the neuroimmune cells astrocytes and microglia. The autacoid adenosine seems to be an important neuromodulator in this condition. Its main receptors involved in the neuroinflammation modulation are A1AR and A2AAR. Evidence suggests that A1AR activation produces a neuroprotective effect and A2AARs block prevents neuroinflammation. The aim of this work is to elucidate the effects of these receptors in neuroinflammation using the partial agonist 2'-dCCPA (2-chloro-N6-cyclopentyl-2'-deoxyadenosine) (C1 KiA1AR = 550 nM, KiA2AAR = 24,800 nM, and KiA3AR = 5560 nM, α = 0.70, EC50A1AR = 832 nM) and the newly synthesized in house compound 8-chloro-9-ethyl-2-phenethoxyadenine (C2 KiA2AAR = 0.75 nM; KiA1AR = 17 nM and KiA3AR = 227 nM, IC50A2AAR = 251 nM unpublished results). The experiments were performed in in vitro and in in vivo models of neuroinflammation. Results showed that C1 was able to prevent the inflammatory effect induced by cytokine cocktail (TNF-α, IL-1ß, and IFN-γ) while C2 possess both anti-inflammatory and antioxidant properties, counteracting both neuroinflammation in mixed glial cells and in an animal model of neuroinflammation. In conclusion, C2 is a potential candidate for neuroinflammation therapy.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Inflamação/patologia , Neurônios/patologia , Receptores Purinérgicos P1/metabolismo , Adenosina/análogos & derivados , Animais , Células Cultivadas , Masculino , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar , Triazinas/farmacologia , Triazóis/farmacologia
5.
Mol Psychiatry ; 25(8): 1876-1900, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29950682

RESUMO

Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.


Assuntos
Envelhecimento/metabolismo , Depressão Sináptica de Longo Prazo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Hipocampo/metabolismo , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Memória Espacial
6.
Brain ; 142(11): 3636-3654, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599329

RESUMO

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Assuntos
Complemento C1q/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Sinapses/patologia , Tauopatias/genética , Tauopatias/patologia , Animais , Autopsia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Transgênicos , Mutação , Aprendizagem Espacial , Tauopatias/psicologia , Proteínas tau/genética
7.
J Caffeine Adenosine Res ; 9(3): 104-127, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559391

RESUMO

While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.

8.
Front Mol Neurosci ; 11: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050407

RESUMO

Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A2AR antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A2AR antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aß1-42 levels in the cortex of APP/PS1dE9 animals, while Aß1-40 increased, thereby strongly affecting the Aß1-42/Aß1-40 ratio. Together, these data support the idea that A2AR blockade is of therapeutic value for AD.

9.
J Enzyme Inhib Med Chem ; 32(1): 850-864, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28661196

RESUMO

The development of adenosine A2A receptor antagonists has received much interest in recent years for the treatment of neurodegenerative diseases. Based on docking studies, a new series of 2-arylbenzoxazoles has been identified as potential A2AR antagonists. Structure-affinity relationship was investigated in position 2, 5 and 6 of the benzoxazole heterocycle leading to compounds with a micromolar affinity towards the A2A receptor. Compound F1, with an affinity of 1 µm, presented good absorption, distribution, metabolism and excretion properties with an excellent aqueous solubility (184 µm) without being cytotoxic at 100 µm. This compound, along with low-molecular weight compound D1 (Ki = 10 µm), can be easily modulated and thus considered as relevant starting points for further hit-to-lead optimisation.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Benzoxazóis/farmacologia , Desenho de Fármacos , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Benzoxazóis/síntese química , Benzoxazóis/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Neuropharmacology ; 117: 316-327, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235548

RESUMO

Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Agonistas de Receptores de Canabinoides/toxicidade , Transtornos da Memória/prevenção & controle , Memória Episódica , Memória de Longo Prazo/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Animais , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Purinas/administração & dosagem , Pirazóis/farmacologia , Pirimidinas/administração & dosagem , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Triazóis/administração & dosagem
11.
Cereb Cortex ; 27(1): 718-730, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26534909

RESUMO

Abnormal accumulation of aggregated α-synuclein (aSyn) is a hallmark of sporadic and familial Parkinson's disease (PD) and related synucleinopathies. Recent studies suggest a neuroprotective role of adenosine A2A receptor (A2AR) antagonists in PD. Nevertheless, the precise molecular mechanisms underlying this neuroprotection remain unclear. We assessed the impact of A2AR blockade or genetic deletion (A2AR KO) on synaptic plasticity and neuronal cell death induced by aSyn oligomers. We found that impairment of LTP associated with aSyn exposure was rescued in A2AR KO mice or upon A2AR blockade, through an NMDA receptor-dependent mechanism. The mechanisms underlying these effects were evaluated in SH-SY5Y cells overexpressing aSyn and rat primary neuronal cultures exposed to aSyn. Cell death in both conditions was prevented by selective A2AR antagonists. Interestingly, blockade of these receptors did not interfere with aSyn oligomerization but, instead, reduced the percentage of cells displaying aSyn inclusions. Altogether, our data raise the possibility that the well-documented effects of A2AR antagonists involve the control of the latter stages of aSyn aggregation, thereby preventing the associated neurotoxicity. These findings suggest that A2AR represent an important target for the development of effective drugs for the treatment of PD and related synucleinopathies.


Assuntos
Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , alfa-Sinucleína/metabolismo , Antagonistas do Receptor A2 de Adenosina/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Potenciais Pós-Sinápticos Excitadores , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Wistar , Receptor A2A de Adenosina/genética , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos , alfa-Sinucleína/genética
12.
Neuromolecular Med ; 19(1): 113-121, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27535567

RESUMO

The protein α-synuclein (α-Syn) interferes with glucose and lipid uptake and also activates innate immune cells. However, it remains unclear whether α-Syn or its familial mutant forms contribute to metabolic alterations and inflammation in synucleinopathies, such as Parkinson's disease (PD). Here, we address this issue in transgenic mice for the mutant A53T human α-Syn (α-SynA53T), a mouse model of synucleinopathies. At 9.5 months of age, mice overexpressing α-SynA53T (homozygous) had a significant reduction in weight, exhibited improved locomotion and did not show major motor deficits compared with control transgenic mice (heterozygous). At 17 months of age, α-SynA53T overexpression promoted general reduction in grip strength and deficient hindlimb reflex and resulted in severe disease and mortality in 50 % of the mice. Analysis of serum metabolites further revealed decreased levels of cholesterol, triglycerides and non-esterified fatty acids (NEFA) in α-SynA53T-overexpressing mice. In fed conditions, these mice also showed a significant decrease in serum insulin without alterations in blood glucose. In addition, assessment of inflammatory gene expression in the brain showed a significant increase in TNF-α mRNA but not of IL-1ß induced by α-SynA53T overexpression. Interestingly, the brain mRNA levels of Sirtuin 2 (Sirt2), a deacetylase involved in both metabolic and inflammatory pathways, were significantly reduced. Our findings highlight the relevance of the mechanisms underlying initial weight loss and hyperactivity as early markers of synucleinopathies. Moreover, we found that changes in blood metabolites and decreased brain Sirt2 gene expression are associated with motor deficits.


Assuntos
Redes e Vias Metabólicas/genética , Atividade Motora/genética , Mutação de Sentido Incorreto , Transtornos Parkinsonianos/genética , Mutação Puntual , alfa-Sinucleína/genética , Fatores Etários , Animais , Glicemia/análise , Peso Corporal/genética , Química Encefálica/genética , Metabolismo Energético/genética , Força da Mão , Humanos , Insulina/sangue , Lipídeos/sangue , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Reflexo Anormal/genética , Teste de Desempenho do Rota-Rod , Sirtuína 2/biossíntese , Sirtuína 2/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , alfa-Sinucleína/fisiologia
13.
Sci Rep ; 6: 31493, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510168

RESUMO

Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/genética , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores de Glucocorticoides/metabolismo , Envelhecimento/metabolismo , Animais , Cafeína/metabolismo , Núcleo Celular/metabolismo , Disfunção Cognitiva/metabolismo , Corticosterona/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos Transgênicos , Modelos Animais , Plasticidade Neuronal , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos
14.
Front Psychiatry ; 5: 67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982640

RESUMO

Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.

15.
Neuropharmacology ; 83: 99-106, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747180

RESUMO

Brain-derived neurotrophic factor (BDNF) through the activation of its receptor (TrkB-FL) exert well-described neuroprotective effects playing a major role in hippocampal synaptic transmission and plasticity such as long-term potentiation (LTP), a molecular surrogate for learning and memory. Impairments in BDNF signalling have been associated to several neurodegenerative disorders such as Alzheimer's disease (AD). Therefore, the reestablishment of BDNF actions is considered a promising strategy for AD treatment. While, most of BDNF synaptic actions, namely on LTP, require the activation of adenosine A2A receptor (A2AR), the antagonists of A2AR have been proven to prevent AD induced deficits in different animal models. Therefore in this work we aimed to evaluate the impact of a chronic in vivo oral administration of an A2AR antagonist (KW-6002) in the BDNF actions upon hippocampal CA1 LTP. The results showed that chronic blockade of A2AR in male Wistar rats inhibits the facilitatory action of BDNF upon LTP on hippocampal CA1 area and decreases both mRNA and protein levels of the TrkB-FL receptor in hippocampus. These findings imply that BDNF signalling may be affected in chronic A2AR blocking conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração , Receptor A2A de Adenosina/metabolismo , Receptor trkB/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Purinas/farmacologia , Ratos , Ratos Wistar
16.
Biochem Soc Trans ; 42(2): 587-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646282

RESUMO

AD (Alzheimer's disease) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. A third pathological component is inflammation. AD results from multiple genetic and environmental risk factors. Among other factors, epidemiological studies report beneficial effects of caffeine, a non-selective antagonist of adenosine receptors. In the present review, we discuss the impact of caffeine and the adenosinergic system in AD pathology as well as consequences in terms of pathology and therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cafeína/uso terapêutico , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Animais , Humanos , Receptores Purinérgicos P1/metabolismo
17.
J Neurochem ; 123(6): 1030-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23057965

RESUMO

In situations of hypoxia, glutamate excitotoxicity induces neuronal death. The release of extracellular adenosine is also triggered and is accompanied by an increase of the stress mediator, corticotrophin-releasing factor (CRF). Adenosine A(2A) receptors contribute to glutamate excitoxicity and their blockade is effective in stress-induced neuronal deficits, but the involvement of CRF on this effect was never explored. We now evaluated the interaction between A(2A) and CRF receptors (CRFR) function, upon glutamate insult. Primary rat cortical neuronal cultures (9 days in vitro) expressing both CRF(1)R and CRF(2)R were challenged with glutamate (20-1000 µM, 24 h). CRF(1)R was found to co-localize with neuronal markers and CRF(2)R to be present in both neuronal and glial cells. The effects of the CRF and A(2A) receptors ligands on cell viability were measured using propidium iodide and Syto-13 fluorescence staining. Glutamate decreased cell viability in a concentration-dependent manner. Urocortin (10 pM), an agonist of CRF receptors, increased cell survival in the presence of glutamate. This neuroprotective effect was abolished by blocking either CRF(1)R or CRF(2)R with antalarmin (10 nM) or anti-Sauvagine-30 (10 nM), respectively. The blockade of A(2A) receptors with a selective antagonist SCH 58261 (50 nM) improved cell viability against the glutamate insult. This effect was dependent on CRF(2)R, but not on CRF(1)R activation. Overall, these data show a protective role of CRF in cortical neurons, against glutamate-induced death. The neuroprotection achieved by A(2A) receptors blockade requires CRF(2)R activation. This interaction between the adenosine and CRF receptors can explain the beneficial effects of using A(2A) receptor antagonists against stress-induced noxious effects.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Ácido Glutâmico/toxicidade , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Córtex Cerebral/patologia , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia
18.
J Neurosci ; 32(34): 11750-62, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22915117

RESUMO

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , alfa-Sinucleína/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Biofísica , Biotinilação , Linhagem Celular Tumoral , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Líquido Extracelular/metabolismo , Hipocampo/citologia , Humanos , Insulina/farmacologia , L-Lactato Desidrogenase/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Neuroblastoma/patologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Valina/análogos & derivados , Valina/farmacologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/química
19.
Neuropsychopharmacology ; 36(9): 1823-36, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525862

RESUMO

Long-term potentiation (LTP), considered the neurophysiological basis for learning and memory, is facilitated by brain-derived neurotrophic factor (BDNF), an action more evident when LTP is evoked by weak θ-burst stimuli and dependent on co-activation of adenosine A(2A) receptors (A(2A)R), which are more expressed in aged rats. As θ-burst stimuli also favor LTP in aged animals, we hypothesized that enhanced LTP in aging could be related to changes in neuromodulation by BDNF. The magnitude of CA1 LTP induced by a weak θ-burst stimuli delivered to the Schaffer collaterals was significantly higher in hippocampal slices taken from 36 to 38 and from 70 to 80-week-old rats, when compared with LTP magnitude in slices from 4 or 10 to 15-week-old rats; this enhancement does not impact in cognitive improvement as aged rats revealed an impairment on hippocampal-dependent learning and memory performance, as assessed by the Morris water maze tests. The scavenger for BDNF, TrkB-Fc, and the inhibitor of Trk phosphorylation, K252a, attenuated LTP in slices from 70 to 80-week-old rats, but not from 10 to 15-week-old rats. When exogenously added, BDNF significantly increased LTP in slices from 4 and 10 to 15-week-old rats, but did not further increased LTP in 36 to 38 or 70 to 80-week-old rats. The effects of exogenous BDNF on LTP were prevented by the A(2A)R antagonist, SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine). These results indicate that the higher LTP magnitude observed upon aging, which does not translate into improved spatial memory performance, is a consequence of an increase in the tonic action of endogenous BDNF.


Assuntos
Envelhecimento/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/fisiopatologia , Adenosina/fisiologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Estimulação Elétrica , Hipocampo/química , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/metabolismo , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Ratos Wistar
20.
Curr Top Med Chem ; 11(8): 1087-101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21401493

RESUMO

Adenosine is a naturally occurring nucleoside present ubiquitously throughout the body as a metabolic intermediate. Besides its metabolic role within the cells, adenosine is released into the extracellular space either by neurons or astrocytes acting as a neuromodulator. Extracellular adenosine exerts its action by activating multiple G-protein coupled receptors (subtypes A(1), A(2A), A(2B) and A(3)) having a wide range of physiological effects in the brain. Adenosine levels rise markedly in response to ischemia, hypoxia, excitotoxicity or inflammation being a neuroprotectant under these conditions. However, adenosine may also contribute to neuronal damage and cell death in other circumstances. These actions are firmly established using multiple animal models. Therefore, increasing attention is now given to the role of adenosine in human brain function and its potential benefit for clinical applications. This review covers recent studies undertaken mostly in humans revealing the actions of adenosine and related drugs in cognition and memory as well as in various pathological situations such as psychiatric disorders, drug addiction and neurodegenerative disorders. The actual use of adenosine or adenosine receptor ligands in ongoing clinical trials for the treatment of schizophrenia, panic disorder and anxiety, cocaine dependence and Parkinson's disease is discussed. The evidence herein reviewed highlights the promising potential of adenosine or adenosine receptor ligands as therapeutic agents in several brain disorders.


Assuntos
Adenosina/farmacologia , Ensaios Clínicos como Assunto , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Adenosina/análogos & derivados , Adenosina/biossíntese , Adenosina/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Cognição/efeitos dos fármacos , Previsões , Humanos , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Ratos , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA