Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
2.
Neurosci Lett ; 521(2): 104-8, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22634628

RESUMO

Ocular enucleation produces significant morphological and physiological changes in central visual areas. However, our knowledge of the molecular events resulting from eye enucleation in visual brain areas remains elusive. We characterized here the transcription nuclear factor kappa-B (NF-κB) activation induced by ocular enucleation in the rat superior colliculus (SC). We also tested the effectiveness of the synthetic glucocorticoid dexamethasone in inhibiting its activation. Electrophoretic mobility shift assays to detect NF-κB indicated that this transcription factor is activated in the SC from 1h to day 15 postlesion. The expression of p65 and p50 proteins in the nuclear extracts was also increased. Dexamethasone treatment was able to significantly inhibit NF-κB activation. These findings suggest that this transcriptional factor is importantly involved in the visual system short-term processes that ensue after retinal lesions in the adult brain.


Assuntos
Enucleação Ocular , NF-kappa B/metabolismo , Colículos Superiores/metabolismo , Animais , Glicemia/metabolismo , Dexametasona/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Glucocorticoides/farmacologia , Immunoblotting , Masculino , Ratos , Ratos Wistar
3.
Hypertension ; 59(6): 1263-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22566500

RESUMO

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs.


Assuntos
Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Animais , Células Cultivadas , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Flutamida/farmacologia , Immunoblotting , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genética , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
ScientificWorldJournal ; 11: 1749-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125433

RESUMO

Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.


Assuntos
Interações Hospedeiro-Patógeno , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , NADPH Oxidases/metabolismo , Oxirredução , Transporte Proteico
5.
J Leukoc Biol ; 90(4): 799-810, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791598

RESUMO

Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 µg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ~40%), whereas PDIred diminished (by ~60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ~70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47(phox) in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47(phox). PDI-p47(phox) association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47(phox) in cytosol. Incubation of purified PDI (>80% reduced) and p47(phox) in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer.


Assuntos
Membrana Celular/enzimologia , Citosol/enzimologia , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Superóxidos/metabolismo , Substituição de Aminoácidos , Antibacterianos/farmacologia , Bacitracina/farmacologia , Membrana Celular/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Mutação de Sentido Incorreto , NADPH Oxidases/genética , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
6.
Free Radic Biol Med ; 51(6): 1116-25, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21586323

RESUMO

In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-, but not the Nox1- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1-, or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(•-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(•-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent.


Assuntos
Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Antioxidantes/farmacologia , Materiais Biomiméticos/farmacologia , Células COS , Chlorocebus aethiops , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Engenharia de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
7.
J Cell Physiol ; 217(1): 1-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18543263

RESUMO

In this review we updated the fatty acid (FA) effects on skeletal muscle metabolism. Abnormal FA availability induces insulin resistance and accounts for several of its symptoms and complications. Efforts to understand the pathogenesis of insulin resistance are focused on disordered lipid metabolism and consequently its effect on insulin signaling pathway. We reviewed herein the FA effects on metabolism, signaling, regulation of gene expression and oxidative stress in insulin resistance. The elevated IMTG content has been associated with increased intracellular content of diacylglycerol (DAG), ceramides and long-chain acyl-coenzyme A (LCA-CoA). This condition has been shown to promote insulin resistance by interfering with phosphorylation of proteins of the insulin pathway including insulin receptor substrate-1/2 (IRS), phosphatidylinositol-3-kinase, (PI3-kinase) and protein kinase C. Although the molecular mechanism is not completely understood, elevated reactive oxygen (ROS) and nitrogen species (RNS) are involved in this process. Elevated ROS/RNS activates nuclear factor-kappaB (NFkB), which promotes the transcription of proinflammatory tumoral necrosis factor alpha (TNFalpha), decreasing the insulin response. Therefore, oxidative stress induced by elevated FA availability may constitute one of the major causes of insulin resistance in skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos
8.
Clin Sci (Lond) ; 103(4): 403-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12241540

RESUMO

The effect of glutamine on the activity of the NADPH oxidase complex from rat neutrophils was investigated. Superoxide anion (O(2)(-)) production was assessed: (1) by scintillation counting by using lucigenin, and (2) by reduction of cytochrome c over 10 min. The effects of glutamine and PMA on the expression of the NADPH oxidase components p22( phox ), gp91( phox ) and p47( phox ) were also determined. Glutamine at 1 and 2 mM increased O(2)(-) generation in the presence of PMA by 100% and 74% respectively, in neutrophils maintained previously for 3 h in medium deprived of this amino acid. DON (6-diazo-5-oxo-L-norleucine), an inhibitor of phosphate-dependent glutaminase and thus of glutamine metabolism, caused a significant decrease in O(2)(-) production by neutrophils stimulated with PMA both in the absence (44%) and in the presence (66%) of glutamine. PMA markedly increased the expression of gp91( phox ), p22( phox ) and p47( phox ) mRNAs. Glutamine (2 mM) increased the expression of these three proteins both in the absence and in the presence of PMA. We postulate that glutamine leads to O(2)(-) production in neutrophils, probably via the generation of ATP and regulation of the expression of components of NADPH oxidase.


Assuntos
Glutamina/farmacologia , Proteínas de Membrana Transportadoras , NADPH Oxidases/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamina/fisiologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA