Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767452

RESUMO

Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (alloHCT) associated with gut microbiota disruptions. However, whether therapeutic microbiota modulation prevents aGVHD is unknown. We conducted a randomized, placebo-controlled trial of third-party fecal microbiota transplantation (FMT) administered at the peak of microbiota injury in 100 patients with acute myeloid leukemia receiving induction chemotherapy and alloHCT recipients. Despite improvements in microbiome diversity, expansion of commensals, and shrinkage of potential pathogens, aGVHD occurred more frequently after FMT than placebo. Although this unexpected finding could be explained by clinical differences between the two arms, we asked whether a microbiota explanation might be also present. To this end, we performed multi-omics analysis of pre- and post-intervention gut microbiome and serum metabolome. We found that post-intervention expansion of Faecalibacterium, a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, predicted a higher risk for aGVHD. Faecalibacterium expansion occurred predominantly after FMT and was due to engraftment of unique donor taxa, suggesting that donor Faecalibacterium-derived antigens might have stimulated allogeneic immune cells. Faecalibacterium and ursodeoxycholic acid (an anti-inflammatory secondary bile acid) were negatively correlated, offering an alternative mechanistic explanation. In conclusion, we demonstrate context dependence of microbiota effects where a normally beneficial bacteria may become detrimental in disease. While FMT is a broad, community-level intervention, it may need precision engineering in ecologically complex settings where multiple perturbations (e.g. antibiotics, intestinal damage, alloimmunity) are concurrently in effect.

2.
Gut Microbes ; 16(1): 2327442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478462

RESUMO

In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/genética , Resultado do Tratamento , Resistência Microbiana a Medicamentos , Fezes
3.
Clin Cancer Res ; 29(23): 4920-4929, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787998

RESUMO

PURPOSE: Intestinal microbiota disruptions early after allogeneic hematopoietic cell transplantation have been associated with increased risk for acute GVHD (aGVHD). In our recent randomized phase II trial of oral, encapsulated, third-party fecal microbiota transplantation (FMT) versus placebo, FMT at the time of neutrophil recovery was safe and ameliorated dysbiosis. Here, we evaluated in post hoc analysis whether donor microbiota engraftment after FMT may protect against aGVHD. EXPERIMENTAL DESIGN: We analyzed pre- and post-FMT stool samples and estimated donor microbiota engraftment (a preplanned secondary endpoint) by determining the fraction of post-FMT microbiota formed by unique donor taxa (donor microbiota fraction; dMf). RESULTS: dMf was higher in patients who later developed grade I or no aGVHD (median 33.9%; range, 1.6%-74.3%) than those who developed grade II-IV aGVHD (median 25.3%; range, 2.2%-34.8%; P = 0.006). The cumulative incidence of grade II-IV aGVHD by day 180 was lower in the group with greater-than-median dMf than the group with less-than-median dMf [14.3% (95% confidence interval, CI, 2.1-37.5) vs. 76.9% (95% CI, 39.7-92.8), P = 0.008]. The only determinant of dMf in cross-validated least absolute shrinkage and selection operator (LASSO)-regularized regression was the patient's pre-FMT microbiota diversity (Pearson correlation coefficient -0.82, P = 1.6 × 10-9), indicating more potent microbiota modulation by FMT in patients with more severe dysbiosis. Microbiota network analysis revealed major rewiring including changes in the most central nodes, without emergence of keystone species, as a potential mechanism of FMT effect. CONCLUSIONS: FMT may have protective effects against aGVHD, especially in patients with more severe microbiota disruptions.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Microbiota , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Disbiose/terapia , Disbiose/complicações , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Resultado do Tratamento
4.
J Clin Oncol ; 41(34): 5306-5319, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235836

RESUMO

PURPOSE: Gut microbiota injury in allogeneic hematopoietic cell transplantation (HCT) recipients and patients with AML has been associated with adverse clinical outcomes. Previous studies in these patients have shown improvements in various microbiome indices after fecal microbiota transplantation (FMT). However, whether microbiome improvements translate into improved clinical outcomes remains unclear. We examined this question in a randomized, double-blind, placebo-controlled phase II trial. METHODS: Two independent cohorts of allogeneic HCT recipients and patients with AML receiving induction chemotherapy were randomly assigned in a 2:1 ratio to receive standardized oral encapsulated FMT versus placebo upon neutrophil recovery. After each course of antibacterial antibiotics, patients received a study treatment. Up to three treatments were administered within 3 months. The primary end point was 4-month all-cause infection rate. Patients were followed for 9 months. RESULTS: In the HCT cohort (74 patients), 4-month infection density was 0.74 and 0.91 events per 100 patient-days in FMT and placebo arms, respectively (infection rate ratio, 0.83; 95% CI, 0.48 to 1.42; P = .49). In the AML cohort (26 patients), 4-month infection density was 0.93 in the FMT arm and 1.25 in the placebo arm, with an infection rate ratio of 0.74 (95% CI, 0.32 to 1.71; P = .48). Unique donor bacterial sequences comprised 25%-30% of the fecal microbiota after FMT. FMT improved postantibiotic recovery of microbiota diversity, restored several depleted obligate anaerobic commensals, and reduced the abundance of expanded genera Enterococcus, Streptococcus, Veillonella, and Dialister. CONCLUSION: In allogeneic HCT recipients and patients with AML, third-party FMT was safe and ameliorated intestinal dysbiosis, but did not decrease infections. Novel findings from this trial will inform future development of FMT trials.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Método Duplo-Cego , Leucemia Mieloide Aguda/terapia , Resultado do Tratamento , Fezes/microbiologia
5.
Clin Nutr ; 41(6): 1153-1162, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500315

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is a toxic end-product of microbial fermentation produced in the colon that may play a role in the pathogenesis of several diseases, including ulcerative colitis and colon cancer. However, the effect of diet interventions on intestinal burden of H2S gas exposure remains poorly understood. OBJECTIVE: Determine the effect of short-term (1-week) plant- and animal-based eating patterns on ex vivo fecal H2S production in healthy human volunteers. METHODS: The study design was an open-label, cross-over diet study and diets were self-administered. Each participant consumed two interventional diets: 1) an animal-based, low fiber (i.e. western) diet and 2) a plant-based, high fiber diet, separated by a two-week washout period. Participants collected full stool samples at the end of each week, which were processed within 2 h of collection to capture H2S production. Microfluidic qPCR (MFQPCR) was used to simultaneously quantify multiple taxonomic and functional groups involved in sulfate reduction and the fecal microbiota was characterized through high-throughput DNA sequencing. RESULTS: Median H2S production was higher following the animal-based diet compared to the plant-based diet (p = 0.02; median difference 29 ppm/g, 95% CI 16-97). However, there was substantial individual variability and 2 of 11 individuals (18%) produced more H2S on the plant-based diet. Using the top and bottom quartiles of H2S percent change between animal- and plant-based diet weeks to define responders and non-responders, significant taxonomic differences were observed between the responder and non-responder cohorts. CONCLUSIONS: Here we report that substrate changes associated with a 1-week plant-based diet intervention resulted in lower ex vivo H2S production compared to a 1-week animal-based diet intervention in most healthy individuals. However, H2S responsiveness to diet was not uniform across the entire cohort, and potential H2S production enterotypes were characterized that may predict individualized H2S responsiveness to diet.


Assuntos
Sulfeto de Hidrogênio , Animais , Estudos Cross-Over , Dieta , Dieta Vegetariana , Fibras na Dieta , Humanos , Hidrogênio , Sulfeto de Hidrogênio/análise
6.
Cell Rep ; 37(2): 109823, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610291

RESUMO

Although both infections and vaccines induce memory B cell (MBC) populations that participate in secondary immune responses, the MBCs generated in each case can differ. Here, we compare SARS-CoV-2 spike receptor binding domain (S1-RBD)-specific primary MBCs that form in response to infection or a single mRNA vaccination. Both primary MBC populations have similar frequencies in the blood and respond to a second S1-RBD exposure by rapidly producing plasmablasts with an abundant immunoglobulin (Ig)A+ subset and secondary MBCs that are mostly IgG+ and cross-react with the B.1.351 variant. However, infection-induced primary MBCs have better antigen-binding capacity and generate more plasmablasts and secondary MBCs of the classical and atypical subsets than do vaccine-induced primary MBCs. Our results suggest that infection-induced primary MBCs have undergone more affinity maturation than vaccine-induced primary MBCs and produce more robust secondary responses.


Assuntos
Vacinas contra COVID-19/imunologia , Plasmócitos/imunologia , SARS-CoV-2/imunologia , Adulto , Animais , Anticorpos Antivirais/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/metabolismo , Reações Cruzadas/imunologia , Feminino , Células HEK293 , Humanos , Imunização/métodos , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Mensageiro/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação/métodos , Vacinas/imunologia
7.
Immunity ; 53(1): 158-171.e6, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32640257

RESUMO

Tissue-resident memory (Trm) CD8+ T cells mediate protective immunity in barrier tissues, but the cues promoting Trm cell generation are poorly understood. Sensing of extracellular adenosine triphosphate (eATP) by the purinergic receptor P2RX7 is needed for recirculating CD8+ T cell memory, but its role for Trm cells is unclear. Here we showed that P2RX7 supported Trm cell generation by enhancing CD8+ T cell sensing of TGF-ß, which was necessary for tissue residency. P2RX7-deficient Trm cells progressively decayed in non-lymphoid tissues and expressed dysregulated Trm-specific markers. P2RX7 was required for efficient re-expression of the receptor TGF-ßRII through calcineurin signaling. Forced Tgfbr2 expression rescued P2RX7-deficient Trm cell generation, and TGF-ß sensitivity was dictated by P2RX7 agonists and antagonists. Forced Tgfbr2 also rescued P2RX7-deficient Trm cell mitochondrial function. Sustained P2RX7 signaling was required for long-term Trm cell maintenance, indicating that P2RX7 signaling drives induction and CD8+ T cell durability in barrier sites.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Crescimento Transformador beta/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Calcineurina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA