Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(45): 28251-28262, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109721

RESUMO

Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIß-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Células Dendríticas/imunologia , Complexo Principal de Histocompatibilidade/fisiologia , Fagossomos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células da Medula Óssea , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptores Toll-Like/metabolismo
2.
Front Oncol ; 9: 1323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828042

RESUMO

ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.

3.
Oncogene ; 38(27): 5396-5412, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30923343

RESUMO

Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival, and migration; however, its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-ß). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-ß-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-ß-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac guanine nucleotide exchange-factors (Rac-GEFs) were also up-regulated in TGF-ß-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-ß-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Proteína Quinase C-épsilon/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Diglicerídeos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática , Humanos , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Biochem Soc Trans ; 46(4): 1003-1012, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30065108

RESUMO

The family of Rho GTPases are involved in the dynamic control of cytoskeleton reorganization and other fundamental cellular functions, including growth, motility, and survival. Rac1, one of the best characterized Rho GTPases, is an established effector of receptors and an important node in signaling networks crucial for tumorigenesis and metastasis. Rac1 hyperactivation is common in human cancer and could be the consequence of overexpression, abnormal upstream inputs, deregulated degradation, and/or anomalous intracellular localization. More recently, cancer-associated gain-of-function mutations in Rac1 have been identified which contribute to tumor phenotypes and confer resistance to targeted therapies. Deregulated expression/activity of Rac guanine nucleotide exchange factors responsible for Rac activation has been largely associated with a metastatic phenotype and drug resistance. Translating our extensive knowledge in Rac pathway biochemistry into a clinical setting still remains a major challenge; nonetheless, remarkable opportunities for cancer therapeutics arise from promising lead compounds targeting Rac and its effectors.


Assuntos
Neoplasias/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Neoplasias/metabolismo , Transdução de Sinais
5.
Oncotarget ; 9(47): 28612-28624, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983884

RESUMO

Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.

6.
J Biol Chem ; 293(22): 8330-8341, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636415

RESUMO

Diacylglycerol (DAG) is a key lipid second messenger downstream of cellular receptors that binds to the C1 domain in many regulatory proteins. Protein kinase C (PKC) isoforms constitute the most prominent family of signaling proteins with DAG-responsive C1 domains, but six other families of proteins, including the chimaerins, Ras-guanyl nucleotide-releasing proteins (RasGRPs), and Munc13 isoforms, also play important roles. Their significant involvement in cancer, immunology, and neurobiology has driven intense interest in the C1 domain as a therapeutic target. As with other classes of targets, however, a key issue is the establishment of selectivity. Here, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu) competition binding assays, we found that a synthetic DAG-lactone, AJH-836, preferentially binds to the novel PKC isoforms PKCδ and PKCϵ relative to classical PKCα and PKCßII. Assessment of intracellular translocation, a hallmark for PKC activation, revealed that AJH-836 treatment stimulated a striking preferential redistribution of PKCϵ to the plasma membrane relative to PKCα. Moreover, unlike with the prototypical phorbol ester phorbol 12-myristate 13-acetate (PMA), prolonged exposure of cells to AJH-836 selectively down-regulated PKCδ and PKCϵ without affecting PKCα expression levels. Biologically, AJH-836 induced major changes in cytoskeletal reorganization in lung cancer cells, as determined by the formation of membrane ruffles, via activation of novel PKCs. We conclude that AJH-836 represents a C1 domain ligand with PKC-activating properties distinct from those of natural DAGs and phorbol esters. Our study supports the feasibility of generating selective C1 domain ligands that promote novel biological response patterns.


Assuntos
Diglicerídeos/química , Lactonas/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Células A549 , Ligação Competitiva , Células HeLa , Humanos , Ligantes , Ligação Proteica , Transporte Proteico , Especificidade por Substrato
7.
Cell Death Dis ; 9(2): 23, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348560

RESUMO

Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.


Assuntos
Neoplasias do Colo/terapia , Proteína Quinase C-delta/uso terapêutico , Neoplasias do Colo/patologia , Humanos , Proteína Quinase C-delta/farmacologia
8.
Small GTPases ; 9(4): 297-303, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27588611

RESUMO

Guanine nucleotide Exchange Factors (GEFs) are responsible for mediating GDP/GTP exchange for specific small G proteins, such as Rac. There has been substantial evidence for the involvement of Rac-GEFs in the control of cancer cell migration and metastatic progression. We have previously established that the Rac-GEF P-Rex1 is a mediator of actin cytoskeleton rearrangements and cell motility in breast cancer cells downstream of HER/ErbB receptors and the G-Protein Coupled Receptor (GPCR) CXCR4. P-Rex1 is highly expressed in luminal A and B breast cancer compared to normal mammary tissue, whereas expression is very low in basal breast cancer, and its expression correlates with the appearance of metastasis in patients. Here, we discuss the involvement of P-Rex1 as an effector of oncogenic/metastatic receptors in breast cancer and underscore its relevance in the convergence of receptor-triggered motile signals. In addition, we provide an overview of our recent findings describing a cross-talk between HER/ErbB receptors and CXCR4, and how this impacts on the activation of P-Rex1/Rac1 signaling, as well as highlight challenges that lie ahead. We propose a model in which P-Rex1 acts as a crucial node for the integration of upstream inputs from HER/ErbB receptors and CXCR4 in luminal breast cancer cells.


Assuntos
Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Humanos
9.
Mol Cell Biol ; 36(15): 2011-26, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185877

RESUMO

The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Receptor ErbB-3/metabolismo , Receptores CXCR4/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Prognóstico , Receptores CXCR4/metabolismo , Transdução de Sinais , Ativação Transcricional
10.
Mol Cancer Res ; 13(9): 1336-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26023164

RESUMO

UNLABELLED: The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1ß, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. IMPLICATIONS: This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis.


Assuntos
Neoplasias Ósseas/secundário , Complexo Mediador , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína Quinase C-épsilon/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Xenoenxertos , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/metabolismo
11.
J Biol Chem ; 289(28): 19823-38, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24825907

RESUMO

Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteína Quinase C-épsilon/biossíntese , Elementos de Resposta , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteína Quinase C-épsilon/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição Sp1/genética
12.
Mol Pharmacol ; 83(5): 1141-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478800

RESUMO

The small GTPase Rac1 has been widely implicated in mammary tumorigenesis and metastasis. Previous studies established that stimulation of ErbB receptors in breast cancer cells activates Rac1 and enhances motility via the Rac-guanine nucleotide exchange factor P-Rex1. As the Janus tyrosine kinase 2 (Jak2)/signal transducer and activator of transcription 3 (Stat3) pathway has been shown to be functionally associated with ErbB receptors, we asked if this pathway could mediate P-Rex1/Rac1 activation in response to ErbB ligands. Here we found that the anticancer agent cucurbitacin I, a Jak2 inhibitor, reduced the activation of Rac1 and motility in response to the ErbB3 ligand heregulin in breast cancer cells. However, Rac1 activation was not affected by Jak2 or Stat3 RNA interference, suggesting that the effect of cucurbitacin I occurs through a Jak2-independent mechanism. Cucurbitacin I also failed to affect the activation of P-Rex1 by heregulin. Subsequent analysis revealed that cucurbitacin I strongly activates RhoA and the Rho effector Rho kinase (ROCK) in breast cancer cells and induces the formation of stress fibers. Interestingly, disruption of the RhoA-ROCK pathway prevented the inhibitory effect of cucurbitacin I on Rac1 activation by heregulin. Lastly, we found that RhoA activation by cucurbitacin I is mediated by reactive oxygen species (ROS). The ROS scavenger N-acetyl L-cysteine and the mitochondrial antioxidant Mito-TEMPO rescued the inhibitory effect of cucurbitacin I on Rac1 activation. In conclusion, these results indicate that ErbB-driven Rac1 activation in breast cancer cells proceeds independently of the Jak2 pathway. Moreover, they established that the inhibitory effect of cucurbitacin I on Rac1 activity involves the alteration of the balance between Rho and Rac.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Janus Quinase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Ligantes , Células MCF-7 , Neuregulina-1/farmacologia , Receptor ErbB-3/metabolismo , Fator de Transcrição STAT3/metabolismo , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
13.
PLoS One ; 7(2): e31714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384062

RESUMO

BACKGROUND: Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established. PRINCIPAL FINDINGS: Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. CONCLUSIONS: Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína Quinase C-épsilon/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Ativação Enzimática , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Interferência de RNA , Transdução de Sinais
14.
Cell Signal ; 24(2): 353-362, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21893191

RESUMO

Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gßγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Neurregulinas/genética , Neurregulinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
15.
J Biol Chem ; 286(13): 11254-64, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21252239

RESUMO

Protein kinase C (PKC) isozymes are key signal transducers involved in normal physiology and disease and have been widely implicated in cancer progression. Despite our extensive knowledge of the signaling pathways regulated by PKC isozymes and their effectors, there is essentially no information on how individual members of the PKC family regulate gene transcription. Here, we report the first PKC isozyme-specific analysis of global gene expression by microarray using RNAi depletion of diacylglycerol/phorbol ester-regulated PKCs. A thorough analysis of this microarray data revealed unique patterns of gene expression controlled by PKCα, PKCδ, and PKCε, which are remarkably different in cells growing in serum or in response to phorbol ester stimulation. PKCδ is the most relevant isoform in controlling the induction of genes by phorbol ester stimulation, whereas PKCε predominantly regulates gene expression in serum. We also established that two PKCδ-regulated genes, FOSL1 and BCL2A1, mediate the apoptotic effect of phorbol esters or the chemotherapeutic agent etoposide in prostate cancer cells. Our studies offer a unique opportunity for establishing novel transcriptional effectors for PKC isozymes and may have significant functional and therapeutic implications.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Proteína Quinase C/metabolismo , Transcrição Gênica/fisiologia , Antineoplásicos Fitogênicos/farmacologia , Carcinógenos/farmacologia , Linhagem Celular , Etoposídeo/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ésteres de Forbol/farmacologia , Proteína Quinase C/genética , Transcrição Gênica/efeitos dos fármacos
16.
Mol Cell ; 40(6): 877-92, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21172654

RESUMO

While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gßγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gßγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA