Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970718

RESUMO

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Assuntos
Neoplasias , Trombose , Humanos , Fator XI/metabolismo , Estudos Prospectivos , Trombose/etiologia , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Hemorragia/induzido quimicamente , Catéteres/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/complicações
2.
Platelets ; 35(1): 2290916, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099327

RESUMO

Platelets are core components of thrombi but their effect on thrombus burden during deep vein thrombosis (DVT) has not been fully characterized. We examined the role of thrombopoietin-altered platelet count on thrombus burden in a murine stasis model of DVT. To modulate platelet count compared to baseline, CD1 mice were pretreated with thrombopoietin antisense oligonucleotide (THPO-ASO, 56% decrease), thrombopoietin mimetic (TPO-mimetic, 36% increase), or saline (within 1%). Thrombi and vein walls were examined on postoperative days (POD) 3 and 7. Thrombus weights on POD 3 were not different between treatment groups (p = .84). The mean thrombus weights on POD 7 were significantly increased in the TPO-mimetic cohort compared to the THPO-ASO (p = .005) and the saline (p = .012) cohorts. Histological grading at POD 3 revealed a significantly increased smooth muscle cell presence in the thrombi and CD31 positive channeling in the vein wall of the TPO-mimetic cohort compared to the saline and THPO-ASO cohorts (p < .05). No differences were observed in histology on POD 7. Thrombopoietin-induced increased platelet count increased thrombus weight on POD 7 indicating platelet count may regulate thrombus burden during early resolution of venous thrombi in this murine stasis model of DVT.


Deep vein thrombosis (DVT) is a pathology in which blood clots form in the deep veins of our body. Usually occurring in the legs, these clots can be dangerous if they dislodge and travel to the heart and are pumped into the lungs. Often these clots do not travel and heal where they formed. However, as the body heals the clot it may also cause damage to the vein wall and predispose the patient to future clots, i.e., the biggest risk factor for a second clot is the first clot. DVT can also cause symptoms of pain, swelling, and redness in the long-term, leading to post-thrombotic syndrome where the initial symptoms of the clot persist for a long time. All blood clots have common components of red blood cells, white blood cells, platelets, and fibrin in varying concentrations. Humans maintain a platelet count between 150 and 400 thousand platelets per microliter of our blood. However, diseases like cancer or medications like chemotherapy can cause a change in our body's platelet count. The effect of a changing platelet count on the size (clot burden) of DVT clot and how platelet count could affect DVT as the clot heals is not fully understood. Studying this might help us develop better targets and treat patients with a wide range of platelet counts who experience DVT. In this study, we intentionally decreased, left unchanged, and increased platelet counts in mice and then created a DVT to study what the effect of low, normal, and high platelet counts, respectively, would be on the clot burden. We observed that mice with higher platelet counts had a higher clot burden during the early part of the healing process of the clot. Within this study, we can conclude that higher platelet counts may lead to higher clot burden in DVT which furthers our understanding of how platelet count affects clot burden during DVT.


Assuntos
Trombose , Trombose Venosa , Humanos , Camundongos , Animais , Trombose Venosa/tratamento farmacológico , Trombose Venosa/patologia , Contagem de Plaquetas , Trombopoetina/farmacologia , Plaquetas/patologia
3.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
4.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
5.
Auton Neurosci ; 164(1-2): 13-9, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21646052

RESUMO

Cardiac sympathetic neurons stimulate heart rate and the force of contraction through release of norepinephrine. Nerve growth factor modulates sympathetic transmission through activation of TrkA and p75NTR. Nerve growth factor plays an important role in post-infarct sympathetic remodeling. We used mice lacking p75NTR to examine the effect of altered nerve growth factor signaling on sympathetic neuropeptide expression, cardiac norepinephrine, and ventricular function after myocardial infarction. Infarct size was similar in wildtype and p75NTR-/- mice after ischemia-reperfusion surgery. Likewise, mRNAs encoding vasoactive intestinal peptide, galanin, and pituitary adenylate cyclase activating peptides were identical in wildtype and p75NTR-/- cardiac sympathetic neurons, as was expression of the TrkA neurotrophin receptor. Norepinephrine content was elevated in the base of the p75NTR-/- ventricle compared to wildtype, but levels were identical below the site of occlusion. Left ventricular pressure, dP/dt(MAX), and dP/dt(MIN) were measured under isoflurane anesthesia 3 and 7 days after surgery. Ventricular pressure decreased significantly 3 days after infarction, and deficits in dP/dt(MAX) were revealed by stimulating beta receptors with dobutamine and release of endogenous norepinephrine with tyramine. dP/dt(MIN) was not altered by genotype or surgical group. Few differences were observed between genotypes 3 days after surgery, in contrast to low pressure and dP/dt(MAX) previously reported in control p75NTR-/- animals. Seven days after surgery ventricular pressure and dP/dt(MAX) were significantly lower in p75NTR-/- hearts compared to WT hearts. Thus, the lack of p75NTR did not enhance cardiac function after myocardial infarction.


Assuntos
Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Norepinefrina/metabolismo , Receptores de Fator de Crescimento Neural/fisiologia , Fibras Simpáticas Pós-Ganglionares/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Norepinefrina/biossíntese , Norepinefrina/fisiologia , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Fibras Simpáticas Pós-Ganglionares/metabolismo , Regulação para Cima/genética
6.
Am J Physiol Heart Circ Physiol ; 298(6): H1652-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20190098

RESUMO

Sympathetic nerves stimulate cardiac function through the release of norepinephrine and the activation of cardiac beta(1)-adrenergic receptors. The sympathetic innervation of the heart is sculpted during development by chemoattractive factors including nerve growth factor (NGF) and the chemorepulsive factor semaphorin 3a. NGF acts through the TrkA receptor and the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons. NGF stimulates sympathetic axon extension into the heart through TrkA, but p75(NTR) modulates multiple coreceptors that can either stimulate or inhibit axon outgrowth. In mice lacking p75(NTR), the sympathetic innervation density in target tissues ranges from denervation to hyperinnervation. Recent studies have revealed significant changes in the sympathetic innervation density of p75NTR-deficient (p75(NTR-/-)) atria between early postnatal development and adulthood. We examined the innervation of adult p75(NTR-/-) ventricles and discovered that the subendocardium of the p75(NTR-/-) left ventricle was essentially devoid of sympathetic nerve fibers, whereas the innervation density of the subepicardium was normal. This phenotype is similar to that seen in mice overexpressing semaphorin 3a, and we found that sympathetic axons lacking p75(NTR) are more sensitive to semaphorin 3a in vitro than control neurons. The lack of subendocardial innervation was associated with decreased dP/dt, altered cardiac beta(1)-adrenergic receptor expression and sensitivity, and a significant increase in spontaneous ventricular arrhythmias. The lack of p75(NTR) also resulted in increased tyrosine hydroxylase content in cardiac sympathetic neurons and elevated norepinephrine in the right ventricle, where innervation density was normal.


Assuntos
Arritmias Cardíacas/metabolismo , Ventrículos do Coração/inervação , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Sistema Nervoso Simpático/crescimento & desenvolvimento , Disfunção Ventricular/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norepinefrina/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia , Disfunção Ventricular/fisiopatologia
7.
Cytokine ; 36(1-2): 9-16, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17150369

RESUMO

Cardiotrophin-1 (CT-1) was identified as a growth factor for cardiac myocytes and CT-1 protects myocytes from cell death. Adult CT-1(-/-) mice exhibit neural deficits including the loss of preganglionic sympathetic neurons, but their autonomic and cardiac parameters have not been examined. We used these mice to determine if the absence of CT-1 or loss of preganglionic sympathetic input altered heart rate, left ventricular pressure, cardiac contractility (dP/dt), or cell death following ischemia-reperfusion. Basal heart rate was increased in CT-1(-/-) mice, and this difference was abolished by ganglionic block. Left ventricular pressure and dP/dt were unchanged. Dobutamine stimulated similar increases in heart rate and dP/dt in both genotypes, but ventricular pressure was significantly lower in CT-1 nulls. Cardiac expression of interleukin-6 (IL-6) mRNA was increased significantly in CT-1 null mice, while leukemia inhibitory factor (LIF) mRNA was unchanged. Infarct size normalized to area at risk was no different in CT-1(-/-) mice (33.8+/-1.0% vs. 37.7+/-3.2% WT) 24h after ischemia-reperfusion. Induction of IL-6 mRNA after infarct was significantly abrogated in CT-1 null mice compared to wild-type mice, but LIF mRNA-induction remained significant in CT-1 null mice and might contribute to cardiac protection in the absence of CT-1.


Assuntos
Citocinas/deficiência , Citocinas/metabolismo , Expressão Gênica , Interleucina-6/genética , Fator Inibidor de Leucemia/genética , Animais , Peso Corporal , Citocinas/genética , Regulação da Expressão Gênica , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/fisiopatologia , Frequência Cardíaca , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Tamanho do Órgão , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA