Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuropathol Exp Neurol ; 78(5): 460-466, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990878

RESUMO

Pathogenic hemizygous variants in the SH2D1A gene cause X-linked lymphoproliferative (XLP) syndrome, a rare primary immunodeficiency usually associated with fatal Epstein-Barr virus infection. Disease onset is typically in early childhood, and the average life expectancy of affected males is ∼11 years. We describe clinical, radiographic, neuropathologic, and genetic features of a 49-year-old man presenting with central nervous system vasculitis that was reminiscent of adult primary angiitis but which was unresponsive to treatment. The patient had 2 brothers; 1 died of aplastic anemia at age 13 and another died of diffuse large B-cell lymphoma in his sixties. Exome sequencing of the patient and his older brother identified a novel hemizygous variant in SH2D1A (c.35G>T, p.Ser12Ile), which encodes the signaling lymphocyte activation molecule (SLAM)-associated protein (SAP). Molecular modeling and functional analysis showed that this variant had decreased protein stability, similar to other pathogenic missense variants in SH2D1A. The family described in this report highlights the broadly heterogeneous clinical presentations of XLP and the accompanying diagnostic challenges in individuals presenting in adulthood. In addition, this report raises the possibility of a biphasic distribution of XLP cases, some of which may be mistaken for age-related malignancies and autoimmune conditions.


Assuntos
Demência por Múltiplos Infartos/diagnóstico por imagem , Demência por Múltiplos Infartos/genética , Transtornos Linfoproliferativos/diagnóstico por imagem , Transtornos Linfoproliferativos/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Sequência de Aminoácidos , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Estrutura Secundária de Proteína , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/química
2.
Neurology ; 91(23): e2170-e2181, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30413633

RESUMO

OBJECTIVE: To identify novel genes involved in the etiology of intracranial aneurysms (IAs) or subarachnoid hemorrhages (SAHs) using whole-exome sequencing. METHODS: We performed whole-exome sequencing in 13 individuals from 3 families with an autosomal dominant IA/SAH inheritance pattern to look for candidate genes for disease. In addition, we sequenced PCNT exon 38 in a further 161 idiopathic patients with IA/SAH to find additional carriers of potential pathogenic variants. RESULTS: We identified 2 different variants in exon 38 from the PCNT gene shared between affected members from 2 different families with either IA or SAH (p.R2728C and p.V2811L). One hundred sixty-four samples with either SAH or IA were Sanger sequenced for the PCNT exon 38. Five additional missense mutations were identified. We also found a second p.V2811L carrier in a family with a history of neurovascular diseases. CONCLUSION: The PCNT gene encodes a protein that is involved in the process of microtubule nucleation and organization in interphase and mitosis. Biallelic loss-of-function mutations in PCNT cause a form of primordial dwarfism (microcephalic osteodysplastic primordial dwarfism type II), and ≈50% of these patients will develop neurovascular abnormalities, including IAs and SAHs. In addition, a complete Pcnt knockout mouse model (Pcnt -/-) published previously showed general vascular abnormalities, including intracranial hemorrhage. The variants in our families lie in the highly conserved PCNT protein-protein interaction domain, making PCNT a highly plausible candidate gene in cerebrovascular disease.


Assuntos
Antígenos/genética , Predisposição Genética para Doença/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual , Sequenciamento do Exoma , Adulto Jovem
4.
Eur J Hum Genet ; 23(10): 1328-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25604855

RESUMO

Many individuals with Parkinson's disease (PD) develop cognitive deficits, and a phenotypic and molecular overlap between neurodegenerative diseases exists. We investigated the contribution of rare variants in seven genes of known relevance to dementias (ß-amyloid precursor protein (APP), PSEN1/2, MAPT (microtubule-associated protein tau), fused in sarcoma (FUS), granulin (GRN) and TAR DNA-binding protein 43 (TDP-43)) to PD and PD plus dementia (PD+D) in a discovery sample of 376 individuals with PD and followed by the genotyping of 25 out of the 27 identified variants with a minor allele frequency <5% in 975 individuals with PD, 93 cases with Lewy body disease on neuropathological examination, 613 individuals with Alzheimer's disease (AD), 182 cases with frontotemporal dementia and 1014 general population controls. Variants identified in APP were functionally followed up by Aß mass spectrometry in transiently transfected HEK293 cells. PD+D cases harbored more rare variants across all the seven genes than PD individuals without dementia, and rare variants in APP were more common in PD cases overall than in either the AD cases or controls. When additional controls from publically available databases were added, one rare variant in APP (c.1795G>A(p.(E599K))) was significantly associated with the PD phenotype but was not found in either the PD cases or controls of an independent replication sample. One of the identified rare variants (c.2125G>A (p.(G709S))) shifted the Aß spectrum from Aß40 to Aß39 and Aß37. Although the precise mechanism remains to be elucidated, our data suggest a possible role for APP in modifying the PD phenotype as well as a general contribution of genetic factors to the development of dementia in individuals with PD.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Variação Genética/genética , Doença de Parkinson/genética , Idoso , Doença de Alzheimer/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Demência/genética , Feminino , Frequência do Gene/genética , Genótipo , Células HEK293 , Humanos , Masculino , Doenças Neurodegenerativas/genética
5.
Mol Neurodegener ; 9: 44, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25373618

RESUMO

BACKGROUND: Loss of function COQ2 mutations results in primary CoQ10 deficiency. Recently, recessive mutations of the COQ2 gene have been identified in two unrelated Japanese families with multiple system atrophy (MSA). It has also been proposed that specific heterozygous variants in the COQ2 gene may confer susceptibility to sporadic MSA. To assess the frequency of COQ2 variants in patients with MSA, we sequenced the entire coding region and investigated all exonic copy number variants of the COQ2 gene in 97 pathologically-confirmed and 58 clinically-diagnosed MSA patients from the United States. RESULTS: We did not find any homozygous or compound heterozygous pathogenic COQ2 mutations including deletion or multiplication within our series of MSA patients. In two patients, we identified two heterozygous COQ2 variants (p.S54W and c.403 + 10G > T) of unknown significance, which were not observed in 360 control subjects. We also identified one heterozygous carrier of a known loss of function p.S146N substitution in a severe MSA-C pathologically-confirmed patient. CONCLUSIONS: The COQ2 p.S146N substitution has been previously reported as a pathogenic mutation in primary CoQ10 deficiency (including infantile multisystem disorder) in a recessive manner. This variant is the third primary CoQ10 deficiency mutation observed in an MSA case (p.R387X and p.R197H). Therefore it is possible that in the heterozygous state it may increase susceptibility to MSA. Further studies, including reassessing family history in patients of primary CoQ10 deficiency for the possible occurrence of MSA, are now warranted to resolve the role of COQ2 variation in MSA.


Assuntos
Alquil e Aril Transferases/genética , Atrofia de Múltiplos Sistemas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
PLoS One ; 9(11): e111989, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375143

RESUMO

BACKGROUND AND OBJECTIVE: Genes encoding RNA-binding proteins, including FUS and TDP43, play a central role in different neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Recently, a mutation located in the nuclear export signal (NES) of the FUS gene has been reported to cause an autosomal dominant form of familial Essential tremor. MATERIAL AND METHODS: We sequenced the exons coding the NES domains of five RNA-binding proteins (TARDBP, hnRNPA2B1, hnRNPA1, TAF15 and EWSR1) that have been previously implicated in neurodegeneration in a series of 257 essential tremor (ET) cases and 376 healthy controls. We genotyped 404 additional ET subjects and 510 healthy controls to assess the frequency of the EWSR1 p.R471C substitution. RESULTS: We identified a rare EWSR1 p.R471C substitution, which is highly conserved, in a single subject with familial ET. The pathogenicity of this substitution remains equivocal, as DNA samples from relatives were not available and the genotyping of 404 additional ET subjects did not reveal any further carriers. No other variants were observed with significant allele frequency differences compared to controls in the NES coding regions. CONCLUSIONS: The present study demonstrates that the NES domains of RNA-binding proteins are highly conserved. The role of the EWSR1 p.R471C substitution needs to be further evaluated in future studies.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Tremor Essencial/genética , Sinais de Exportação Nuclear , Proteína FUS de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína EWS de Ligação a RNA , Proteína FUS de Ligação a RNA/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA