Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273587

RESUMO

Epilepsy is characterized by hypersynchronous neuronal discharges, which are associated with an increased cerebral metabolic rate of oxygen and ATP demand. Uncontrolled seizure activity (status epilepticus) results in mitochondrial exhaustion and ATP depletion, which potentially generate energy mismatch and neuronal loss. Many cells can adapt to increased energy demand by increasing metabolic capacities. However, acute metabolic adaptation during epileptic activity and its relationship to chronic epilepsy remains poorly understood. We elicited seizure-like events (SLEs) in an in vitro model of status epilepticus for eight hours. Electrophysiological recording and tissue oxygen partial pressure recordings were performed. After eight hours of ongoing SLEs, we used proteomics-based kinetic modeling to evaluate changes in metabolic capacities. We compared our findings regarding acute metabolic adaptation to published proteomic and transcriptomic data from chronic epilepsy patients. Epileptic tissue acutely responded to uninterrupted SLEs by upregulating ATP production capacity. This was achieved by a coordinated increase in the abundance of proteins from the respiratory chain and oxidative phosphorylation system. In contrast, chronic epileptic tissue shows a 25-40% decrease in ATP production capacity. In summary, our study reveals that epilepsy leads to dynamic metabolic changes. Acute epileptic activity boosts ATP production, while chronic epilepsy reduces it significantly.


Assuntos
Trifosfato de Adenosina , Epilepsia , Trifosfato de Adenosina/metabolismo , Humanos , Epilepsia/metabolismo , Animais , Adaptação Fisiológica , Masculino , Metabolismo Energético , Proteômica/métodos , Mitocôndrias/metabolismo , Doença Crônica , Fosforilação Oxidativa , Estado Epiléptico/metabolismo
2.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920024

RESUMO

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Assuntos
Ácido Aspártico Endopeptidases , Catepsina D , Pepstatinas , Marcadores de Fotoafinidade , Humanos , Ácido Aspártico Endopeptidases/química , Catepsina D/química , Diazometano , Pepstatinas/química , Pepstatinas/farmacologia , Marcadores de Fotoafinidade/química , Proteína Sequestossoma-1/química
3.
J Proteome Res ; 21(4): 1181-1188, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35316605

RESUMO

As novel liquid chromatography-mass spectrometry (LC-MS) technologies for proteomics offer a substantial increase in LC-MS runs per day, robust and reproducible sample preparation emerges as a new bottleneck for throughput. We introduce a novel strategy for positive-pressure 96-well filter-aided sample preparation (PF96) on a commercial positive-pressure solid-phase extraction device. PF96 allows for a five-fold increase in throughput in conjunction with extraordinary reproducibility with Pearson product-moment correlations on the protein level of r = 0.9993, as demonstrated for mouse heart tissue lysate in 40 technical replicates. The targeted quantification of 16 peptides in the presence of stable-isotope-labeled reference peptides confirms that PF96 variance is barely assessable against technical variation from nanoLC-MS instrumentation. We further demonstrate that protein loads of 36-60 µg result in optimal peptide recovery, but lower amounts ≥3 µg can also be processed reproducibly. In summary, the reproducibility, simplicity, and economy of time provide PF96 a promising future in biomedical and clinical research.


Assuntos
Peptídeos , Proteômica , Animais , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Camundongos , Peptídeos/análise , Proteômica/métodos , Reprodutibilidade dos Testes
4.
Blood ; 138(7): 544-556, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33735912

RESUMO

Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Movimento Celular/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Proteínas de Neoplasias , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos
5.
Nat Microbiol ; 5(2): 331-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844296

RESUMO

Viruses manipulate cellular signalling by inducing the degradation of crucial signal transducers, usually via the ubiquitin-proteasome pathway. Here, we show that the murine cytomegalovirus (Murid herpesvirus 1) M45 protein induces the degradation of two cellular signalling proteins, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) essential modulator (NEMO) and the receptor-interacting protein kinase 1 (RIPK1), via a different mechanism: it induces their sequestration as insoluble protein aggregates and subsequently facilitates their degradation by autophagy. Aggregation of target proteins requires a distinct sequence motif in M45, which we termed 'induced protein aggregation motif'. In a second step, M45 recruits the retromer component vacuolar protein sorting 26B (VPS26B) and the microtubule-associated protein light chain 3 (LC3)-interacting adaptor protein TBC1D5 to facilitate degradation of aggregates by selective autophagy. The induced protein aggregation motif is conserved in M45-homologous proteins of several human herpesviruses, including herpes simplex virus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, but is only partially conserved in the human cytomegalovirus UL45 protein. We further show that the HSV-1 ICP6 protein induces RIPK1 aggregation and degradation in a similar fashion to M45. These data suggest that induced protein aggregation combined with selective autophagy of aggregates (aggrephagy) represents a conserved viral immune-evasion mechanism.


Assuntos
Herpesviridae/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Células Cultivadas , Células HEK293 , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Muromegalovirus/imunologia , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidade , Agregados Proteicos/imunologia , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/imunologia , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
6.
Sci Rep ; 9(1): 8836, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222112

RESUMO

Many cellular events are driven by changes in protein expression, measurable by mass spectrometry or antibody-based assays. However, using conventional technology, the analysis of transcription factor or membrane receptor expression is often limited by an insufficient sensitivity and specificity. To overcome this limitation, we have developed a high-resolution targeted proteomics strategy, which allows quantification down to the lower attomol range in a straightforward way without any prior enrichment or fractionation approaches. The method applies isotope-labeled peptide standards for quantification of the protein of interest. As proof of principle, we applied the improved workflow to proteins of the unfolded protein response (UPR), a signaling pathway of great clinical importance, and could for the first time detect and quantify all major UPR receptors, transducers and effectors that are not readily detectable via antibody-based-, SRM- or conventional PRM assays. As transcription and translation is central to the regulation of UPR, quantification and determination of protein copy numbers in the cell is important for our understanding of the signaling process as well as how pharmacologic modulation of these pathways impacts on the signaling. These questions can be answered using our newly established workflow as exemplified in an experiment using UPR perturbation in a glioblastoma cell lines.


Assuntos
Glioblastoma/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Dosagem de Genes , Glioblastoma/química , Glioblastoma/patologia , Humanos , Marcação por Isótopo , Proteínas de Membrana/análise , Proteínas de Membrana/normas , Peptídeos/normas , Proteômica/normas , Fatores de Transcrição/análise , Fatores de Transcrição/normas
7.
PLoS Pathog ; 14(12): e1007481, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532172

RESUMO

Cytomegaloviruses (CMVs) have a highly restricted host range as they replicate only in cells of their own or closely related species. To date, the molecular mechanisms underlying the CMV host restriction remain poorly understood. However, it has been shown that mouse cytomegalovirus (MCMV) can be adapted to human cells and that adaptation goes along with adaptive mutations in several viral genes. In this study, we identify MCMV M117 as a novel host range determinant. Mutations in this gene enable the virus to cross the species barrier and replicate in human RPE-1 cells. We show that the M117 protein is expressed with early kinetics, localizes to viral replication compartments, and contributes to the inhibition of cellular DNA synthesis. Mechanistically, M117 interacts with members of the E2F transcription factor family and induces E2F target gene expression in murine and human cells. While the N-terminal part of M117 mediates E2F interaction, the C-terminal part mediates self-interaction. Both parts are required for the activation of E2F-dependent transcription. We further show that M117 is dispensable for viral replication in cultured mouse fibroblasts and endothelial cells, but is required for colonization of mouse salivary glands in vivo. Conversely, inactivation of M117 or pharmacological inhibition of E2F facilitates MCMV replication in human RPE-1 cells, whereas replacement of M117 by adenovirus E4orf6/7, a known E2F activator, prevents it. These results indicate that E2F activation is detrimental for MCMV replication in human cells. In summary, this study identifies MCMV M117 as a novel E2F activator that functions as a host range determinant by precluding MCMV replication in human cells.


Assuntos
Fatores de Transcrição E2F , Infecções por Herpesviridae/genética , Especificidade de Hospedeiro/genética , Muromegalovirus/genética , Replicação Viral , Animais , Humanos , Camundongos
8.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146486

RESUMO

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Assuntos
Ácido Graxo Sintase Tipo I/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Malonil Coenzima A/metabolismo , Neovascularização Retiniana/patologia , Serina-Treonina Quinases TOR/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orlistate/uso terapêutico , Processamento de Proteína Pós-Traducional , Neovascularização Retiniana/tratamento farmacológico
9.
Mol Cell Proteomics ; 17(4): 826-834, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358340

RESUMO

Proteases are in the center of many diseases, and consequently, proteases and their substrates are important drug targets as represented by an estimated 5-10% of all drugs under development. Mass spectrometry has been an indispensable tool for the discovery of novel protease substrates, particularly through the proteome-scale enrichment of so-called N-terminal peptides representing endogenous protein N termini. Methods such as combined fractional diagonal chromatography (COFRADIC)1 and, later, terminal amine isotopic labeling of substrates (TAILS) have revealed numerous insights into protease substrates and consensus motifs. We present an alternative and simple protocol for N-terminal peptide enrichment, based on charge-based fractional diagonal chromatography (ChaFRADIC) and requiring only well-established protein chemistry and a pipette tip. Using iTRAQ-8-plex, we quantified on average 2,073 ± 52 unique N-terminal peptides from only 4.3 µg per sample/channel, allowing the identification of proteolytic targets and consensus motifs. This high sensitivity may even allow working with clinical samples such as needle biopsies in the future. We applied our method to study the dynamics of staurosporine-induced apoptosis. Our data demonstrate an orchestrated regulation of specific pathways after 1.5 h, 3 h, and 6 h of treatment, with many important players of homeostasis targeted already after 1.5 h. We additionally observed an early multilevel modulation of the splicing machinery both by proteolysis and phosphorylation. This may reflect the known role of alternative splicing variants for a variety of apoptotic genes, which seems to be a driving force of staurosporine-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Proteômica/métodos , Estaurosporina/farmacologia , Linhagem Celular Tumoral , Cromatografia/métodos , Humanos , Espectrometria de Massas/métodos
10.
Anal Chem ; 89(24): 13137-13145, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29136377

RESUMO

Despite huge efforts to map the human proteome using mass spectrometry the overall sequence coverage achieved to date is still below 50%. Reasons for missing areas of the proteome comprise protease-resistant domains including the lack/excess of enzymatic cleavage sites, nonunique peptide sequences, impaired peptide ionization/separation and low expression levels. To access novel areas of the proteome the beneficial use of enzymes complementary to trypsin, such as Glu-C, Asp-N, Lys-N, Arg-C, LysargiNase has been reported. Here, we present how the broad-specificity protease subtilisin enables mapping of previously hidden areas of the proteome. We systematically evaluated its digestion efficiency and reproducibility and compared it to the gold standard in the field, trypsin. Notably, subtilisin allows reproducible near-complete digestion of cells lysates in 1-5 min. As expected from its broad specificity the generation of overlapping peptide sequences reduces the number of identified proteins compared to trypsin (8363 vs 6807; 1% protein FDR). However, subtilisin considerably improved the coverage of missing and particularly proline-rich areas of the proteome. Along 14 628 high confidence phosphorylation sites identified in total, only 33% were shared between both enzymes, while 37% were exclusive to subtilisin. Notably, 926 of these were not even accessible by additional in silico digestion with either Asp-N, Arg-C, Glu-C, Lys-C, or Lys-N. Thus, subtilisin might be particularly beneficial for system-wide profiling of post-translational modification sites. Finally, we demonstrate that subtilisin can be used for reporter-ion based in-depth quantification, providing a precision comparable to trypsin-despite broad specificity and fast digestion that may increase technical variance.


Assuntos
Proteoma/análise , Subtilisina/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Espectrometria de Massas , Especificidade por Substrato , Tripsina/metabolismo
11.
Cell Rep ; 18(7): 1699-1712, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199842

RESUMO

Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.


Assuntos
Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Proteína Fosfatase 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HEK293 , Células HT29 , Humanos , Fosforilação/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia
12.
Blood ; 129(2): e1-e12, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28060719

RESUMO

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbß3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways.


Assuntos
Difosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária/fisiologia , Transdução de Sinais/fisiologia , Plaquetas/efeitos dos fármacos , Western Blotting , Humanos , Iloprosta/farmacologia , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA