Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 309(Pt 1): 136594, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167211

RESUMO

Four carbon materials, spent coffee-ground biochar, carbon black, short CNTs, and nitrogen-doped few-layer graphene (N-graphene) were tested for their functionalization with a commercial carboxylesterase. Their robustness to variations in time and key physicochemical parameters (temperature and pH) was analysed. In general, carbon nanomaterials showed better performance than biochar, both in terms of binding capacity and resilience in harsh conditions, at statistically significant levels. Among the tested materials, functionalized N-graphene also showed the highest level of inhibition of carboxylesterase by pesticide exposure. Therefore, N-graphene was selected for biotechnological application of pesticide scavenging toxicity in T. thermophila, a ciliate bioindicator of water quality. While immobilization of the enzyme was not effective in the case of carbaryl, a methyl carbamate, in the case of the organophosphorus dichlorvos, a 1- or 30-min contact time with a water solution containing 5 times the LC100 - 0.5 mM - allowed 50% and 100% rescue of ciliate survival, respectively. These results suggest that functionalization with carboxylesterase may be of additional benefit compared to bare carbon in water clean-up procedures, especially for highly hydrophilic pesticides such as dichlorvos.


Assuntos
Grafite , Nanoestruturas , Praguicidas , Praguicidas/toxicidade , Carboxilesterase/metabolismo , Carbaril , Diclorvós , Carbono , Biomarcadores Ambientais , Fuligem , Café , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA