Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(7): e1010329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877760

RESUMO

Glioblastoma (GB) is the most aggressive, lethal and frequent primary brain tumor. It originates from glial cells and is characterized by rapid expansion through infiltration. GB cells interact with the microenvironment and healthy surrounding tissues, mostly neurons and vessels. GB cells project tumor microtubes (TMs) contact with neurons, and exchange signaling molecules related to Wingless/WNT, JNK, Insulin or Neuroligin-3 pathways. This cell to cell communication promotes GB expansion and neurodegeneration. Moreover, healthy neurons form glutamatergic functional synapses with GB cells which facilitate GB expansion and premature death in mouse GB xerograph models. Targeting signaling and synaptic components of GB progression may become a suitable strategy against glioblastoma. In a Drosophila GB model, we have determined the post-synaptic nature of GB cells with respect to neurons, and the contribution of post-synaptic genes expressed in GB cells to tumor progression. In addition, we document the presence of intratumoral synapses between GB cells, and the functional contribution of pre-synaptic genes to GB calcium dependent activity and expansion. Finally, we explore the relevance of synaptic genes in GB cells to the lifespan reduction caused by GB advance. Our results indicate that both presynaptic and postsynaptic proteins play a role in GB progression and lethality.


Assuntos
Glioblastoma , Animais , Drosophila/genética , Glioblastoma/metabolismo , Camundongos , Neurônios/metabolismo , Transdução de Sinais/genética , Sinapses/metabolismo , Microambiente Tumoral
2.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061177

RESUMO

The mammalian central nervous system (CNS) exhibits limited regenerative capacity and the mechanisms that mediate its regeneration are not fully understood. Here, we present a novel experimental design to damage the CNS by using a contusion injury paradigm. The design of this protocol allows the study of long-term and short-term cellular responses, including those of the CNS and the immune system, and of any implications regarding functional recovery. We demonstrate for the first time that adult Drosophilamelanogaster glial cells undergo spontaneous functional recovery following crush injury. This crush injury leads to an intermediate level of functional recovery after damage, which is ideal to screen for genes that facilitate or prevent the regeneration process. Here, we validate this model and analyse the immune responses of glial cells as a central regulator of functional regeneration. Additionally, we demonstrate that glial cells and macrophages contribute to functional regeneration through mechanisms involving the Jun N-terminal kinase (JNK) pathway and the Drosophila protein Draper (Drpr), characteristic of other neural injury paradigms. We show that macrophages are recruited to the injury site and are required for functional recovery. Further, we show that the proteins Grindelwald and Drpr in Drosophila glial cells mediate activation of JNK, and that expression of drpr is dependent on JNK activation. Finally, we link neuron-glial communication and the requirement of neuronal vesicular transport to regulation of the JNK pathway and functional recovery. This article has an associated First Person interview with the first author of the paper.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Animais , Sistema Nervoso Central/fisiopatologia , Proteínas de Drosophila/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Compressão Nervosa , Neuroglia/metabolismo , Neurônios/metabolismo , Fagócitos/metabolismo , Recuperação de Função Fisiológica , Vesículas Transportadoras/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918666

RESUMO

The c-Jun N-terminal kinase (JNK) signalling pathway is a conserved response to a wide range of internal and external cellular stress signals. Beside the stress response, the JNK pathway is involved in a series of vital regulatory mechanisms during development and adulthood that are critical to maintain tissue homeostasis. These mechanisms include the regulation of apoptosis, growth, proliferation, differentiation, migration and invasion. The JNK pathway has a diverse functionality and cell-tissue specificity, and has emerged as a key player in regeneration, tumorigenesis and other pathologies. The JNK pathway is highly active in the central nervous system (CNS), and plays a central role when cells need to cope with pathophysiological insults during development and adulthood. Here, we review the implications of the JNK pathway in pathologies of the CNS. More specifically, we discuss some newly identified examples and mechanisms of JNK-driven tumor progression in glioblastoma, regeneration/repair after an injury, neurodegeneration and neuronal cell death. All these new discoveries support the central role of JNK in CNS pathologies and reinforce the idea of JNK as potential target to reduce their detrimental effects.


Assuntos
Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Suscetibilidade a Doenças , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Biomarcadores , Doenças do Sistema Nervoso Central/diagnóstico , Humanos
4.
PLoS Biol ; 17(12): e3000545, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31846454

RESUMO

Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, ß-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Metaloproteinases da Matriz/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/patologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Receptores Frizzled/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Microtúbulos/metabolismo , Neurônios/patologia , Proteína Wnt1/metabolismo
5.
Dev Dyn ; 247(1): 85-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791751

RESUMO

Although the central nervous system does not regenerate, injury induces repair and regenerative responses in glial cells. In mammals, activated microglia clear up apoptotic cells and debris resulting from the injury, astrocytes form a scar that contains the lesion, and NG2-glia elicit a prominent regenerative response. NG2-glia regenerate themselves and differentiate into oligodendrocytes, which remyelinate axons leading to some recovery of locomotion. The regenerative response of glial cells is evolutionarily conserved across the animals and Drosophila genetics revealed an underlying gene network. This involves the genes Notch, kon-tiki, eiger, dorsal, and prospero, homologues of mammalian Notch1, ng2, TNF, NFκB, and prox1, respectively. Feedback loops between these genes enable a surge in proliferation in response to injury and ensuing differentiation. Negative feedback sets a timer for proliferation, and prevents uncontrolled growth that could lead to glioma. Remarkable parallels are found in these genetic relationships between fruit flies and mammals. Drosophila findings provide insights into gene functions that could be manipulated in stem cells and progenitors for therapeutic repair. Developmental Dynamics 247:85-93, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas/fisiopatologia , Redes Reguladoras de Genes , Neuroglia/fisiologia , Regeneração/genética , Traumatismos da Medula Espinal/fisiopatologia , Animais , Lesões Encefálicas/genética , Traumatismos da Medula Espinal/genética
6.
Development ; 140(10): 2181-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633512

RESUMO

A number of transcription factors that are expressed within most, if not all, embryonic neuroblast (NB) lineages participate in neural subtype specification. Some have been extensively studied in several NB lineages (e.g. components of the temporal gene cascade) whereas others only within specific NB lineages. To what extent they function in other lineages remains unknown. Klumpfuss (Klu), the Drosophila ortholog of the mammalian Wilms tumor 1 (WT1) protein, is one such transcription factor. Studies in the NB4-2 lineage have suggested that Klu functions to ensure that the two ganglion mother cells (GMCs) in this embryonic NB lineage acquire different fates. Owing to limited lineage marker availability, these observations were made only for the NB4-2 lineage. Recent findings reveal that Klu is necessary for larval neuroblast growth and self-renewal. We have extended the study of Klu to the well-known embryonic NB5-6T lineage and describe a novel role for Klu in the Drosophila embryonic CNS. Our results demonstrate that Klu is expressed specifically in the postmitotic Ap4/FMRFa neuron, promoting its differentiation through the initiation of BMP signaling. Our findings indicate a pleiotropic function of Klu in Ap cluster specification in general and particularly in Ap4 neuron differentiation, indicating that Klu is a multitasking transcription factor. Finally, our studies indicate that a transitory downregulation of klu is crucial for the specification of the Ap4/FMRFa neuron. Similar to WT1, klu seems to have either self-renewal or differentiation-promoting functions, depending on the developmental context.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , FMRFamida/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Análise por Conglomerados , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Neurônios/metabolismo , Transdução de Sinais
7.
Mech Dev ; 128(3-4): 208-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21236339

RESUMO

The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier regulatory events influence post-mitotic cell fate decisions is beginning to be understood in the Drosophila NB 5-6 lineage. However, it remains unknown to what extent these events operate in other lineages. To better understand this issue, we have used a very highly specific marker that identifies a small subset of abdominal cells expressing the Drosophila neuropeptide Capa: the ABCA neurons. Our data support the birth of the ABCA neurons from NB 5-3 in a cas temporal window in the abdominal segments A2-A4. Moreover, we show that the ABCA neuron has an ABCA-sibling cell which dies by apoptosis. Surprisingly, both cells are also generated in the abdominal segments A5-A7, although they undergo apoptosis before expressing Capa. In addition, we have performed a targeted genetic screen to identify players involved in ABCA specification. We have found that the ABCA fate requires zfh2, grain, Grunge and hedgehog genes. Finally, we show that the NB 5-3 generates other subtype of Capa-expressing cells (SECAs) in the third suboesophageal segment, which are born during a pdm/cas temporal window, and have different genetic requirements for their specification.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Abdome/inervação , Animais , Antígenos de Diferenciação/metabolismo , Padronização Corporal/genética , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Tecido Nervoso/citologia , Tecido Nervoso/embriologia , Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neuropeptídeos/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA