Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 200(5): E207-E220, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260855

RESUMO

AbstractThe G matrix, which quantifies the genetic architecture of traits, is often viewed as an evolutionary constraint. However, G can evolve in response to selection and may also be viewed as a product of adaptive evolution. Convergent evolution of G in similar environments would suggest that G evolves adaptively, but it is difficult to disentangle such effects from phylogeny. Here, we use the adaptive radiation of Anolis lizards to ask whether convergence of G accompanies the repeated evolution of habitat specialists, or ecomorphs, across the Greater Antilles. We measured G in seven species representing three ecomorphs (trunk-crown, trunk-ground, and grass-bush). We found that the overall structure of G does not converge. Instead, the structure of G is well conserved and displays a phylogenetic signal consistent with Brownian motion. However, several elements of G showed signatures of convergence, indicating that some aspects of genetic architecture have been shaped by selection. Most notably, genetic correlations between limb traits and body traits were weaker in long-legged trunk-ground species, suggesting effects of recurrent selection on limb length. Our results demonstrate that common selection pressures may have subtle but consistent effects on the evolution of G, even as its overall structure remains conserved.


Assuntos
Lagartos , Animais , Filogenia , Ecossistema , Fenótipo , Extremidades
2.
J Evol Biol ; 33(4): 468-494, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872929

RESUMO

Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post-colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor-poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.


Assuntos
Distribuição Animal , Especiação Genética , Lagartos/genética , Animais , Região do Caribe , Masculino , Fenótipo , Filogeografia , Característica Quantitativa Herdável
3.
J Hered ; 111(1): 33-42, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31774914

RESUMO

Understanding the origins and early stages of diversification is one of the most elusive tasks in adaptive radiation research. Classical approaches, which aim to infer past processes from present-day patterns of biological diversity, are fraught with difficulties and assumptions. An alternative approach has been to study young clades of relatively few species, which may represent the putative early stages of adaptive radiation. However, it is difficult to predict whether those groups will ever reach the ecological and morphological disparity observed in the sorts of clades usually referred to as adaptive radiations, thereby making their utility in informing the early stages of such radiations uncertain. Caribbean Anolis lizards are a textbook example of an adaptive radiation; anoles have diversified independently on each of the 4 islands in the Greater Antilles, producing replicated radiations of phenotypically diverse species. However, the underlying processes that drove these radiations occurred 30-65 million years ago and so are unobservable, rendering major questions about how these radiations came to be difficult to tackle. What did the ancestral species of the anole radiation look like? How did new species arise? What processes drove adaptive diversification? Here, we review what we have learned about the cryptic early stages of adaptive radiation from studies of Anolis lizards, and how these studies have attempted to bridge the process-pattern divide of adaptive radiation research. Despite decades of research, however, fundamental questions linking eco-evolutionary processes to macroevolutionary patterns in anoles remain difficult to answer.


Assuntos
Adaptação Biológica , Especiação Genética , Lagartos , Animais , Evolução Biológica , Lagartos/genética , Modelos Biológicos , Fenótipo , Filogeografia
4.
Evol Lett ; 2(4): 310-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30283684

RESUMO

On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along "genetic lines of least resistance" defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20-40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape.

5.
Proc Biol Sci ; 281(1784): 20140329, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741020

RESUMO

Sexual dimorphisms vary widely among species. This variation must arise through sex-specific evolutionary modifications to developmental processes. Anolis lizards vary extensively in their expression of cranial dimorphism. Compared with other Anolis species, members of the carolinensis clade have evolved relatively high levels of cranial dimorphism; males of this clade have exceptionally long faces relative to conspecific females. Developmentally, this facial length dimorphism arises through an evolutionarily novel, clade-specific strategy. Our analyses herein reveal that sex-specific regulation of the oestrogen pathway underlies evolution of this exaggerated male phenotype, rather than the androgen or insulin growth factor pathways that have long been considered the primary regulators of male-biased dimorphism among vertebrates. Our results suggest greater intricacy in the genetic mechanisms that underlie sexual dimorphisms than previously appreciated.


Assuntos
Hormônios/genética , Lagartos/anatomia & histologia , Lagartos/fisiologia , Caracteres Sexuais , Crânio/anatomia & histologia , Androgênios/genética , Androgênios/metabolismo , Animais , Estrogênios/genética , Estrogênios/metabolismo , Hormônios/metabolismo , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Masculino , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Crânio/crescimento & desenvolvimento , Crânio/fisiologia , Especificidade da Espécie
6.
Am Nat ; 175(6): 623-39, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20412015

RESUMO

Adaptive radiation refers to diversification from an ancestral species that produces descendants adapted to use a great variety of distinct ecological niches. In this review, I examine two aspects of adaptive radiation: first, that it results from ecological opportunity and, second, that it is deterministic in terms of its outcome and evolutionary trajectory. Ecological opportunity is usually a prerequisite for adaptive radiation, although in some cases, radiation can occur in the absence of preexisting opportunity. Nonetheless, many clades fail to radiate although seemingly in the presence of ecological opportunity; until methods are developed to identify and quantify ecological opportunity, the concept will have little predictive utility in understanding a priori when a clade might be expected to radiate. Although predicted by theory, replicated adaptive radiations occur only rarely, usually in closely related and poorly dispersing taxa found in the same region on islands or in lakes. Contingencies of a variety of types may usually preclude close similarity in the outcome of evolutionary diversification in other situations. Whether radiations usually unfold in the same general sequence is unclear because of the unreliability of methods requiring phylogenetic reconstruction of ancestral events. The synthesis of ecological, phylogenetic, experimental, and genomic advances promises to make the coming years a golden age for the study of adaptive radiation; natural history data, however, will always be crucial to understanding the forces shaping adaptation and evolutionary diversification.


Assuntos
Adaptação Biológica , Evolução Biológica , Ecossistema , Animais
7.
Evolution ; 64(4): 1151-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19891624

RESUMO

Most studies of adaptive radiations focus on morphological aspects of differentiation, yet behavior is also an important component of evolutionary diversification, often mediating the relationship between animal ecology and morphology. In species within radiations that are convergent in ecology and morphology, we then also expect convergence in behavior. Here, we examined 13 Anolis lizard species to determine whether territorial strategies have evolved convergently with morphology and habitat use. We evaluated two aspects of territoriality: behavioral defense of space via territorial displays, and territory overlap within and between sexes. Controlling for the phylogenetic relationships of the taxa in our study, we found that species similar in perch height and diameter convergently evolved patterns of territory overlap, whereas species similar in habitat visibility (the proportion of space that can be seen from a perch) convergently evolved display behavior. We also found that species with greater display time have more extensive male-male territory overlap. This study provides strong evidence for the role of habitat in the evolution of territoriality and suggests that the social structure of a species ultimately evolves in concert with habitat use and morphology.


Assuntos
Evolução Biológica , Ecossistema , Lagartos , Territorialidade , Animais , Comportamento Animal , Região do Caribe , Feminino , Masculino
8.
Science ; 323(5915): 732-7, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19197052

RESUMO

Biologists have long been fascinated by the exceptionally high diversity displayed by some evolutionary groups. Adaptive radiation in such clades is not only spectacular, but is also an extremely complex process influenced by a variety of ecological, genetic, and developmental factors and strongly dependent on historical contingencies. Using modeling approaches, we identify 10 general patterns concerning the temporal, spatial, and genetic/morphological properties of adaptive radiation. Some of these are strongly supported by empirical work, whereas for others, empirical support is more tentative. In almost all cases, more data are needed. Future progress in our understanding of adaptive radiation will be most successful if theoretical and empirical approaches are integrated, as has happened in other areas of evolutionary biology.


Assuntos
Biodiversidade , Evolução Biológica , Especiação Genética , Adaptação Biológica , Animais , Ecossistema , Fósseis , Variação Genética , Modelos Biológicos , Filogenia , Seleção Genética
9.
Proc Biol Sci ; 275(1652): 2749-57, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18713721

RESUMO

Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland counterparts. Quite the contrary, we found that rates and extent of diversification were comparable--Anolis adaptive radiation is not an island phenomenon. However, mainland and Caribbean anoles occupy different parts of morphological space; in independent colonizations of both island and mainland habitats, island anoles have evolved shorter limbs and better-developed toe pads. These patterns suggest that the two areas are on different evolutionary trajectories. The ecological causes of these differences are unknown, but may relate to differences in predation or competition among mainland and island communities.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Especiação Genética , Geografia , Lagartos/anatomia & histologia , Fenótipo , Animais , Pesos e Medidas Corporais , América Central , Extremidades/anatomia & histologia , Filogenia , Análise de Componente Principal , Índias Ocidentais
10.
Nature ; 447(7141): 202-5, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17495925

RESUMO

Sexual dimorphism is widespread and substantial throughout the animal world. It is surprising, then, that such a pervasive source of biological diversity has not been integrated into studies of adaptive radiation, despite extensive and growing attention to both phenomena. Rather, most studies of adaptive radiation either group individuals without regard to sex or focus solely on one sex. Here we show that sexual differences contribute substantially to the ecomorphological diversity produced by the adaptive radiations of West Indian Anolis lizards: within anole species, males and females occupy mostly non-overlapping parts of morphological space; the overall extent of sexual variation is large relative to interspecific variation; and the degree of variation depends on ecological type. Thus, when sexual dimorphism in ecologically relevant traits is substantial, ignoring its contribution may significantly underestimate the adaptive component of evolutionary radiation. Conversely, if sexual dimorphism and interspecific divergence are alternative means of ecological diversification, then the degree of sexual dimorphism may be negatively related to the extent of adaptive radiation.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Lagartos/anatomia & histologia , Lagartos/fisiologia , Caracteres Sexuais , Animais , Tamanho Corporal , Feminino , Lagartos/classificação , Masculino , Filogenia
11.
Proc Biol Sci ; 271(1554): 2257-65, 2004 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-15539351

RESUMO

Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three pre dictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.


Assuntos
Demografia , Genética Populacional , Lagartos/anatomia & histologia , Lagartos/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Pesos e Medidas Corporais , Cuba , DNA Mitocondrial/genética , Geografia , Fenômenos Geológicos , Geologia , Modelos Genéticos , Dados de Sequência Molecular , Pigmentação/fisiologia , Rodopsina/genética , Análise de Sequência de DNA , Especificidade da Espécie
12.
Science ; 301(5635): 961-4, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12920297

RESUMO

Identification of general properties of evolutionary radiations has been hindered by the lack of a general statistical and phylogenetic approach applicable across diverse taxa. We present a comparative analytical framework for examining phylogenetic patterns of diversification and morphological disparity with data from four iguanian-lizard taxa that exhibit substantially different patterns of evolution. Taxa whose diversification occurred disproportionately early in their evolutionary history partition more of their morphological disparity among, rather than within, subclades. This inverse relationship between timing of diversification and morphological disparity within subclades may be a general feature that transcends the historically contingent properties of different evolutionary radiations.


Assuntos
Evolução Biológica , Iguanas , Adaptação Biológica , Animais , Ecossistema , Meio Ambiente , Iguanas/anatomia & histologia , Iguanas/classificação , Iguanas/genética , Iguanas/fisiologia , Funções Verossimilhança , Modelos Estatísticos , Filogenia , Especificidade da Espécie
13.
Evolution ; 53(4): 1226-1234, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28565525

RESUMO

We compared the morphological diversity (i.e., the amount of morphological space occupied) of two similar clades, the lizard genera Anolis and Sceloporus. These species-rich monophyletic clades are similar in body size, age of origin, and many aspects of their natural history. We examined a number of morphological traits whose variation is likely to represent adaptation to different aspects of the environment, including body size, limb proportions, head dimensions, and tail length. Examination of the position of species in multidimensional space, based on a principal components analysis, indicates that the morphological diversity of Anolis, which we refer to as disparity, is significantly greater than that of Sceloporus. One potential explanation for this pattern is that morphological diversification in Anolis was facilitated by the evolution of subdigital toe-pads, which allow anoles to use the environment in ways not available to Sceloporus. The geographic location of diversification (tropical and subtropical for Anolis, arid for Sceloporus) may also have been important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA