Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
JHEP Rep ; 5(8): 100794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520673

RESUMO

Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver. In this study, we investigated the role of MAGL in liver regeneration. Methods: Hepatocyte proliferation was studied in vitro in hepatoma cell lines and ex vivo in precision-cut human liver slices. Liver regeneration was investigated in mice treated with a pharmacological MAGL inhibitor, MJN110, as well as in animals globally invalidated for MAGL (MAGL-/-) and specifically invalidated in hepatocytes (MAGLHep-/-) or myeloid cells (MAGLMye-/-). Two models of liver regeneration were used: acute toxic carbon tetrachloride injection and two-thirds partial hepatectomy. MAGLMye-/- liver macrophages profiling was analysed by RNA sequencing. A rescue experiment was performed by in vivo administration of interferon receptor antibody in MAGLMye-/- mice. Results: Precision-cut human liver slices from patients with chronic liver disease and human hepatocyte cell lines exposed to MJN110 showed reduced hepatocyte proliferation. Mice with global invalidation or mice treated with MJN110 showed blunted liver regeneration. Moreover, mice with specific deletion of MAGL in either hepatocytes or myeloid cells displayed delayed liver regeneration. Mechanistically, MAGLHep-/- mice showed reduced liver eicosanoid production, in particular prostaglandin E2 that negatively impacts on hepatocyte proliferation. MAGL inhibition in macrophages resulted in the induction of the type I interferon pathway. Importantly, neutralising the type I interferon pathway restored liver regeneration of MAGLMye-/- mice. Conclusions: Our data demonstrate that MAGL promotes liver regeneration by hepatocyte and macrophage reprogramming. Impact and Implications: By using human liver samples and mouse models of global or specific cell type invalidation, we show that the monoacylglycerol pathway plays an essential role in liver regeneration. We unveil the mechanisms by which MAGL expressed in both hepatocytes and macrophages impacts the liver regeneration process, via eicosanoid production by hepatocytes and the modulation of the macrophage interferon pathway profile that restrains hepatocyte proliferation.

2.
Hepatology ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37212145

RESUMO

Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.

3.
Nat Commun ; 14(1): 1830, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005415

RESUMO

Recent data have shown that liver fibrosis can regress even at later stages of cirrhosis and shifting the immune response from pro-inflammatory towards a resolutive profile is considered as a promising option. The immune regulatory networks that govern the shift of the inflammatory phenotype and thus potential reversal of liver fibrosis are lesser known. Here we show that in precision-cut human liver slices obtained from patients with end-stage fibrosis and in mouse models, inhibiting Mucosal-Associated Invariant T (MAIT) cells using pharmacological or antibody-driven approaches, limits fibrosis progression and even regresses fibrosis, following chronic toxic- or non-alcoholic steatohepatitis (NASH)-induced liver injury. Mechanistic studies, combining RNA sequencing, in vivo functional studies (performed in male mice) and co-culture experiments indicate that disruption of the MAIT cell-monocyte/macrophage interaction results in resolution of fibrosis both by increasing the frequency of restorative Ly6Clo at the expenses of pro-fibrogenic Ly6Chi monocyte-derived macrophages and promoting an autophagic phenotype in both subsets. Thus, our data show that MAIT cell activation and the consequential phenotype shift of liver macrophages are important pathogenic features of liver fibrosis and could be targeted by anti-fibrogenic therapy.


Assuntos
Células T Invariantes Associadas à Mucosa , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Cirrose Hepática/patologia , Macrófagos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Fenótipo , Camundongos Endogâmicos C57BL
4.
J Hepatol ; 74(6): 1442-1454, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631228

RESUMO

In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.


Assuntos
Antifibróticos/uso terapêutico , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Linfócitos/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antifibróticos/farmacologia , Colesterol/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipogênese/efeitos dos fármacos , Cirrose Hepática/complicações , Cirrose Hepática/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/imunologia
5.
Nat Commun ; 11(1): 2779, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487999

RESUMO

T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation.


Assuntos
Cistinil Aminopeptidase/metabolismo , Endossomos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Animais , Membrana Celular/metabolismo , Proliferação de Células , Clatrina/metabolismo , Cistinil Aminopeptidase/genética , Modelos Animais de Doenças , Endocitose/fisiologia , Células HEK293 , Humanos , Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Qa-SNARE/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188134

RESUMO

Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.


Assuntos
Biologia Celular , Técnicas Citológicas/métodos , Fígado/patologia , Animais , Carcinoma Hepatocelular/patologia , Comunicação Celular , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Expressão Gênica , Alemanha , Hepatócitos/patologia , Humanos , Hipertensão Portal/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Organoides/patologia
7.
Front Immunol ; 11: 619039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613548

RESUMO

Background and Aims: Patients with cirrhosis and acute-on-chronic liver failure (ACLF) have immunosuppression, indicated by an increase in circulating immune-deficient monocytes. The aim of this study was to investigate simultaneously the major blood-immune cell subsets in these patients. Material and Methods: Blood taken from 67 patients with decompensated cirrhosis (including 35 critically ill with ACLF in the intensive care unit), and 12 healthy subjects, was assigned to either measurements of clinical blood counts and microarray (genomewide) analysis of RNA expression in whole-blood; microarray (genomewide) analysis of RNA expression in blood neutrophils; or assessment of neutrophil antimicrobial functions. Results: Several features were found in patients with ACLF and not in those without ACLF. Indeed, clinical blood count measurements showed that patients with ACLF were characterized by leukocytosis, neutrophilia, and lymphopenia. Using the CIBERSORT method to deconvolute the whole-blood RNA-expression data, revealed that the hallmark of ACLF was the association of neutrophilia with increased proportions of macrophages M0-like monocytes and decreased proportions of memory lymphocytes (of B-cell, CD4 T-cell lineages), CD8 T cells and natural killer cells. Microarray analysis of neutrophil RNA expression revealed that neutrophils from patients with ACLF had a unique phenotype including induction of glycolysis and granule genes, and downregulation of cell-migration and cell-cycle genes. Moreover, neutrophils from these patients had defective production of the antimicrobial superoxide anion. Conclusions: Genomic analysis revealed that, among patients with decompensated cirrhosis, those with ACLF were characterized by dysregulation of blood immune cells, including increases in neutrophils (that had a unique phenotype) and macrophages M0-like monocytes, and depletion of several lymphocyte subsets (including memory lymphocytes). All these lymphocyte alterations, along with defective neutrophil superoxide anion production, may contribute to immunosuppression in ACLF, suggesting targets for future therapies.


Assuntos
Insuficiência Hepática Crônica Agudizada/sangue , Insuficiência Hepática Crônica Agudizada/imunologia , Cirrose Hepática/sangue , Cirrose Hepática/imunologia , Idoso , Feminino , Humanos , Contagem de Linfócitos , Macrófagos , Masculino , Pessoa de Meia-Idade , Neutrófilos , Projetos Piloto
8.
Nat Rev Immunol ; 19(10): 643-657, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308521

RESUMO

Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.


Assuntos
Células T Invariantes Associadas à Mucosa/imunologia , Apoptose , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Infecções/imunologia , Inflamação/imunologia , Interleucina-17/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/imunologia
9.
J Hepatol ; 70(5): 985-998, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711404

RESUMO

Autophagy is a self-eating catabolic pathway that contributes to liver homeostasis through its role in energy balance and in the quality control of the cytoplasm, by removing misfolded proteins, damaged organelles and lipid droplets. Autophagy not only regulates hepatocyte functions but also impacts on non-parenchymal cells, such as endothelial cells, macrophages and hepatic stellate cells. Deregulation of autophagy has been linked to many liver diseases and its modulation is now recognized as a potential new therapeutic strategy. Indeed, enhancing autophagy may prevent the progression of a number of liver diseases, including storage disorders (alpha-1 antitrypsin deficiency, Wilson's disease), acute liver injury, non-alcoholic steatohepatitis and chronic alcohol-related liver disease. Nevertheless, in some situations such as fibrosis, targeting specific liver cells must be considered, as autophagy displays opposing functions depending on the cell type. In addition, an optimal therapeutic time-window should be identified, since autophagy might be beneficial in the initial stages of disease, but detrimental at more advanced stages, as in the case of hepatocellular carcinoma. Finally, identifying biomarkers of autophagy and methods to monitor autophagic flux in vivo are important steps for the future development of personalized autophagy-targeting strategies. In this review, we provide an update on the regulatory role of autophagy in various aspects of liver pathophysiology, describing the different strategies to manipulate autophagy and discussing the potential to modulate autophagy as a therapeutic strategy in the context of liver diseases.


Assuntos
Autofagia/fisiologia , Hepatopatias/metabolismo , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Humanos , Cirrose Hepática/metabolismo , Hepatopatias/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Deficiência de alfa 1-Antitripsina/etiologia
10.
J Magn Reson Imaging ; 49(4): 1166-1173, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390366

RESUMO

BACKGROUND: Inflammation involves a heterogeneous macrophage population, for which there is no readily available MR assessment method. PURPOSE: To assess the feasibility of distinguishing proinflammatory M1 and antiinflammatory M2 macrophages at MRI enhanced with gadolinium liposomes or ultrasmall superparamagnetic iron oxide particles. STUDY TYPE: In vitro. SPECIMEN: We employed cultured RAW macrophages. M0 macrophages were polarized with lipopolysaccharide (LPS) or interleukin-4 (IL-4), resulting in M1 or M2 macrophages. The macrophages were incubated with gadolinium (±rhodamine) liposomes or iron oxide particles and cell pellets were prepared for MRI. FIELD STRENGTH/SEQUENCE: Transverse relaxation rates and quantitative susceptibility were obtained at 3.0T with multiecho turbo spin echo and spoiled gradient echo sequences. ASSESSMENT: MRI results were compared with confocal microscopy, flow cytometry, and expression of endocytosis, M1 and M2 genes. STATISTICAL TESTS: Mann-Whitney and Kruskal-Wallis tests were performed. RESULTS: Higher transverse relaxation rates and susceptibility were observed in M1 than in M2 and M0 macrophages (P < 0.01 both with liposomes and USPIO) and significantly different susceptibility in M2 and M0 macrophages (P < 0.01 both with liposomes and USPIO). These MRI results were confirmed at confocal microscopy and flow cytometry. LPS macrophages displayed M1 gene expression, whereas IL-4 macrophages showed M2 polarization and lower endocytosis gene expression rates. DATA CONCLUSION: These in vitro results show that it is feasible to distinguish between proinflammatory M1 and antiinflammatory M2 macrophages according to their level of contrast agent uptake at MRI. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1166-1173.


Assuntos
Compostos Férricos/química , Gadolínio/química , Lipossomos/química , Macrófagos/citologia , Imageamento por Ressonância Magnética , Animais , Meios de Contraste/química , Dextranos/química , Endocitose , Nanopartículas de Magnetita/química , Camundongos , Microscopia Confocal , Fagocitose , Fenótipo , Células RAW 264.7
11.
Gut ; 68(3): 522-532, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30301768

RESUMO

OBJECTIVE: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury. DESIGN: C57BL/6J mice and mice with global invalidation of MAGL (MAGL -/- ), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells. RESULTS: MAGL -/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited. CONCLUSION: MAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cirrose Hepática Experimental/tratamento farmacológico , Fígado/enzimologia , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Tetracloreto de Carbono , Contagem de Células , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Hidrolases/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Monoacilglicerol Lipases/fisiologia , Receptor CB2 de Canabinoide/metabolismo , Succinimidas/farmacologia , Succinimidas/uso terapêutico
12.
Nat Commun ; 9(1): 2146, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858567

RESUMO

Liver fibrosis is the common response to chronic liver injury, and leads to cirrhosis and its complications. Persistent inflammation is a driving force of liver fibrosis progression. Mucosal-associated invariant T (MAIT) cells are non-conventional T cells that display altered functions during chronic inflammatory diseases. Here, we show that circulating MAIT cells are reduced in patients with alcoholic or non-alcoholic fatty liver disease-related cirrhosis while they accumulate in liver fibrotic septa. Using two models of chronic liver injury, we demonstrate that MAIT cell-enriched mice show increased liver fibrosis and accumulation of hepatic fibrogenic cells, whereas MAIT cell-deficient mice are resistant. Co-culture experiments indicate that MAIT cells enhance the proinflammatory properties of monocyte-derived macrophages, and promote mitogenic and proinflammatory functions of fibrogenic cells, via distinct mechanisms. Our results highlight the profibrogenic functions of MAIT cells and suggest that targeting MAIT cells may constitute an attractive antifibrogenic strategy during chronic liver injury.


Assuntos
Cirrose Hepática/imunologia , Macrófagos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Adulto , Idoso , Animais , Contagem de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia
13.
J Pharmacol Exp Ther ; 363(2): 126-135, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28864467

RESUMO

Exchange protein activated by cAMP (Epac-1) is an important signaling mechanism for cAMP-mediated effects, yet factors that change Epac-1 levels are unknown. Such factors are relevant because it has been postulated that Epac-1 directly affects fibrogenesis. Prostaglandin E2 (PGE2) is a well-known cAMP activator, and we therefore studied the effects of this cyclo-oxygenase product on Epac-1 expression and on fibrogenesis within the liver. Liver fibrosis was induced by 8 weeks carbon tetrachloride (CCL4) administration to mice. In the last 2 weeks, mice received vehicle, PGE2, the cyclo-oxygenase-2 inhibitor niflumic acid (NFA), or PGE2 coupled to cell-specific carriers to hepatocytes, Kupffer cells, or hepatic stellate cells (HSC). Results showed antifibrotic effects of PGE2 and profibrotic effects of NFA in CCL4 mice. Western blot analysis revealed reduced Epac-1 protein expression in fibrotic livers of mice and humans compared with healthy livers. PGE2 administration to fibrotic mice completely restored intrahepatic Epac-1 levels and also led to reduced Rho kinase activity, a downstream target of Epac-1. Cell-specific delivery of PGE2 to either hepatocytes, Kupffer cells, or HSC identified the latter cell as the key player in the observed effects on Epac-1 and Rho kinase. No significant alterations in protein kinase A expressions were found. In primary isolated HSC, PGE2 elicited Rap1 translocation reflecting Epac-1 activation, and Epac-1 agonists attenuated platelet-derived growth factor-induced proliferation and migration of these cells. These studies demonstrate that PGE2 enhances Epac-1 activity in HSC, which is associated with significant changes in (myo)fibroblast activities in vitro and in vivo. Therefore, Epac-1 is a potential target for antifibrotic drugs.


Assuntos
Dinoprostona/farmacologia , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Regulação para Cima/fisiologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Criança , Dinoprostona/uso terapêutico , Feminino , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Células NIH 3T3 , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
14.
Am J Physiol Cell Physiol ; 312(3): C263-C273, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903585

RESUMO

Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the leading causes of cirrhosis and increase the risk of hepatocellular carcinoma and liver-related death. ALD and NAFLD share common pathogenic features extending from isolated steatosis to steatohepatitis and steatofibrosis, which can progress to cirrhosis and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of NAFLD and ALD are complex and still unclear. Important links between the regulation of autophagy (macroautophagy and chaperone-mediated autophagy) and chronic liver diseases have been reported. Autophagy may protect against steatosis and progression to steatohepatitis by limiting hepatocyte injury and reducing M1 polarization, as well as promoting liver regeneration. Its role in fibrosis and hepatocarcinogenesis is more complex. It has pro- and antifibrogenic properties depending on the hepatic cell type concerned, and beneficial and deleterious effects on hepatocarcinogenesis at initiating and late phases, respectively. This review summarizes the latest advances on the role of autophagy in different stages of fatty liver disease progression and describes its divergent and cell-specific effects during chronic liver injury.


Assuntos
Autofagia , Doença Hepática Terminal/patologia , Doença Hepática Terminal/fisiopatologia , Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Fígado/fisiopatologia , Medicina Baseada em Evidências , Humanos , Fígado/patologia , Modelos Biológicos
16.
Sci Rep ; 6: 28806, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346657

RESUMO

Kupffer cells, the resident macrophages of the liver, play a major role in the pathogenesis of alcoholic liver disease. We have previously demonstrated that CB2 receptor protects against alcoholic liver disease by inhibiting alcohol-induced inflammation and steatosis via the regulation of Kupffer cell activation. Here, we explored the mechanism underlying these effects and hypothesized that the anti-inflammatory properties of CB2 receptor in Kupffer cells rely on activation of autophagy. For this purpose, mice invalidated for CB2 receptor (CB2(Mye-/-) mice) or for the autophagy gene ATG5 (ATG5(Mye-/-) mice) in the myeloid lineage, and their littermate wild-type mice were subjected to chronic-plus-binge ethanol feeding. CB2(Mye-/-) mice showed exacerbated alcohol-induced pro-inflammatory gene expression and steatosis. Studies in cultured macrophages demonstrated that CB2 receptor activation by JWH-133 stimulated autophagy via a heme oxygenase-1 dependent pathway. Moreover, JWH-133 reduced the induction of inflammatory genes by lipopolysaccharide in wild-type macrophages, but not in ATG5-deficient cells. The CB2 agonist also protected from alcohol-induced liver inflammation and steatosis in wild-type mice, but not in ATG5(Mye-/-) mice demonstrating that macrophage autophagy mediates the anti-inflammatory and anti-steatogenic effects of CB2 receptor. Altogether these results demonstrate that CB2 receptor activation in macrophages protects from alcohol-induced steatosis by inhibiting hepatic inflammation through an autophagy-dependent pathway.


Assuntos
Autofagia , Hepatopatias Alcoólicas/metabolismo , Macrófagos/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Alelos , Animais , Anti-Inflamatórios/química , Proteína 5 Relacionada à Autofagia/genética , Linhagem da Célula , Etanol/química , Fígado Gorduroso/metabolismo , Heme Oxigenase-1/metabolismo , Hepatite Alcoólica/metabolismo , Inflamação , Lipopolissacarídeos/química , Fígado/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células RAW 264.7 , Receptor CB2 de Canabinoide/agonistas
18.
J Cell Biochem ; 117(5): 1176-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26477987

RESUMO

Statins have been shown to exert anti-inflammatory and anti-fibrogenic properties in the liver. In the present study, we explored the mechanisms underlying anti-fibrogenic effects of statins in isolated hepatic myofibroblasts and focused on cyclooxyegnase-2, a major anti-proliferative pathway in these cells. We show that simvastatin and fluvastatin inhibit thymidine incorporation in hMF in a dose-dependent manner. Pretreatment of cells with NS398, a COX-2 inhibitor, partially blunted this effect. cAMP levels, essential to the inhibition of hMF proliferation, were increased by statins and inhibited by non-steroidal anti-inflammatory drugs. Since statins modify prenylation of some important proteins in gene expression, we investigated the targets involved using selective inhibitors of prenyltransferases. Inhibition of geranylgeranylation resulted in the induction of COX-2 and mPGES-1. Using gel retardation assays, we further demonstrated that statins potentially activated the NFκB and CRE/E-box binding for COX-2 promoter and the binding of GC-rich regions and GATA for mPGES-1. Together these data demonstrate that statin limit hepatic myofibroblasts proliferation via a COX-2 and mPGES-1 dependent pathway. These data suggest that statin-dependent increase of prostaglandin in hMF contributes to its anti-fibrogenic effect.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miofibroblastos/efeitos dos fármacos , Prostaglandina-E Sintases/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Fluvastatina , Fatores de Transcrição GATA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Fígado/citologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Nitrobenzenos/farmacologia , Regiões Promotoras Genéticas/genética , Prostaglandina-E Sintases/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinvastatina/farmacologia , Sulfonamidas/farmacologia
19.
Autophagy ; 11(8): 1280-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061908

RESUMO

Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.


Assuntos
Autofagia , Cirrose Hepática/patologia , Macrófagos/patologia , Proteínas Associadas aos Microtúbulos/genética , Animais , Proteína 5 Relacionada à Autofagia , Tetracloreto de Carbono/química , Linhagem da Célula , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Células de Kupffer/citologia , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Miofibroblastos/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo
20.
Am J Pathol ; 184(6): 1763-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713392

RESUMO

Alcoholic liver disease is a predominant cause of liver-related mortality in Western countries. The early steps of alcohol-induced steatosis and liver injury involve several mechanisms, including inflammation and oxidative stress. The inflammatory process is initiated by polarization of Kupffer cells toward a proinflammatory M1 phenotype, and we recently found that promoting anti-inflammatory M2 Kupffer cell polarization protects against alcohol-induced hepatocyte steatosis and apoptosis. Alcohol-induced oxidative stress is a potential trigger of senescence, and senescent cells exhibit characteristic functional resistance to apoptosis. We sought to evaluate induction of hepatocyte senescence as an early protective mechanism against alcoholic liver disease. Combining in vivo and in vitro studies, we show that M2 macrophages trigger hepatocyte senescence and enhance alcohol-induced hepatocyte senescence, as indicated by increased ß-galactosidase activity, elevated CDKN1A mRNA expression, and induction of nuclear p21. We identify IL-6 as the mediator of M2-induced hepatocyte senescence. Senescent hepatocytes display characteristic resistance to apoptosis but also to steatosis, thus arguing for an early protective effect against alcoholic liver disease. These findings further suggest that pharmacologic interventions targeting M2 polarization during the early stages of alcoholic liver disease may represent an attractive strategy for the limitation of inflammation, hepatocyte apoptosis, and steatosis.


Assuntos
Apoptose , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Interleucina-6/metabolismo , Células de Kupffer/metabolismo , Hepatopatias Alcoólicas/metabolismo , Animais , Senescência Celular , Fígado Gorduroso/patologia , Feminino , Hepatócitos/patologia , Células de Kupffer/patologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA