Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888631

RESUMO

Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.


Assuntos
Venenos de Formiga , Formigas , Animais , Venenos de Formiga/farmacologia , Venenos de Formiga/química , Peptídeos/farmacologia , Peptídeos/química , Formigas/química
2.
Biomolecules ; 13(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979381

RESUMO

Currently, crop protection relies heavily on chemical treatments, which ultimately leads to environmental contamination and pest resistance. Societal and public policy considerations urge the need for new eco-friendly solutions. In this perspective, biopesticides are effective alternatives to chemical insecticides for the control of various insect pests. Legumes contain numerous insecticidal proteins aimed at protecting their high nitrogen content from animal/insect predation. Investigating one such protein family at genome scale, we discovered a unique diversity of the albumin 1 family in the (model) barrel medic genome. Only some members retained very high insecticidal activity. We uncovered that AG41 peptide from the alfalfa roots displays an outstanding insecticidal activity against several pests such as aphids and weevils. Here we report the 3D structure and activity of AG41 peptide. Significant insights into the structural/functional relationships explained AG41 high insecticidal activity. Such observations pave the way for the development of bio-insecticides, with AG41 peptide as the lead compound.


Assuntos
Fabaceae , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/química , Insetos , Peptídeos/farmacologia , Albuminas
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293341

RESUMO

Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/metabolismo , Filogenia , Inseticidas/farmacologia , Inseticidas/metabolismo , Cisteína/metabolismo , Agentes de Controle Biológico/metabolismo , Simbiose , Peptídeos/farmacologia , Peptídeos/metabolismo , Dissulfetos/metabolismo , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo
4.
Biomol NMR Assign ; 12(1): 117-122, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29224116

RESUMO

Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.


Assuntos
Deutério/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas c-fyn/química , Domínios de Homologia de src , Domínios Proteicos
5.
PLoS One ; 11(8): e0161573, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561012

RESUMO

Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion.


Assuntos
Galinhas/imunologia , Peptídeo Hidrolases/metabolismo , beta-Defensinas/metabolismo , Animais , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina K/metabolismo , Catepsina L/metabolismo , Catepsinas/metabolismo , Quimotripsina/química , Hidrólise , Mucosa Intestinal/metabolismo , Elastase de Leucócito/metabolismo , Espectrometria de Massas , Conformação Molecular , Tonsila Palatina/metabolismo , Proteólise , Tripsina/química
6.
Biomol NMR Assign ; 10(1): 223-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878852

RESUMO

Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2.


Assuntos
Elafina/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Sequência de Aminoácidos , Humanos , Domínios Proteicos
7.
Biochemistry ; 53(49): 7745-54, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25419866

RESUMO

Plant defensins (PDF) are cysteine-rich peptides that are major actors in the innate immunity in plants. Besides their antifungal activity, some PDF such as Arabidopsis halleri PDF1.1b confer zinc tolerance in plants. Here we present (i) an efficient protocol for the production of AhPDF1.1b by solid-phase peptide synthesis followed by controlled oxidative folding to obtain the highly pure native form of the defensin and (ii) the three-dimensional (3D) nuclear magnetic resonance structure of AhPDF1.1b, the first 3D structure of plant defensin obtained with a synthetic peptide. Its fold is organized around the typical cysteine-stabilized α-helix ß-sheet motif and contains the γ-core motif involved in the antifungal activity of all plant defensins. On the basis of our structural analysis of AhPDF1 defensins combined with previous biological data for antifungal and zinc tolerance activities, we established the essential role of cis-Pro41 within the γ-core. In fact, the four consecutive residues (Val39-Phe40-Pro41-Ala42) are strictly conserved for plant defensins able to tolerate zinc. We hypothesized that structural and/or dynamic features of this sequence are related to the ability of the defensin to chelate zinc.


Assuntos
Proteínas de Arabidopsis/química , Defensinas/química , Fungicidas Industriais/química , Modelos Moleculares , Adaptação Fisiológica , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacologia , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Sequência Conservada , Defensinas/metabolismo , Defensinas/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Prolina/química , Conformação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Técnicas de Síntese em Fase Sólida , Zinco/metabolismo , Zinco/toxicidade
8.
Chemphyschem ; 5(6): 807-14, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15253308

RESUMO

The principal components and orientations of the chemical shift anisotropy (CSA) tensors of nearly all 13C carbonyl nuclei in a small protein have been determined in isotropic solution by a combination of three complementary cross-correlation measurements.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Ubiquitinas/química , Anisotropia , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA