Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Immunol ; 25(1): 117-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012417

RESUMO

In cancer and infections, self-renewing stem-like CD8+ T cells mediate the response of immunotherapies and replenish terminally exhausted T cells and effector-like T cells. However, the programs governing the lineage choice in chimeric antigen receptor (CAR) T cells are unclear. Here, by simultaneously profiling single-cell chromatin accessibility and transcriptome in the same CAR T cells, we identified heterogeneous chromatin states within CD8+ T cell subsets that foreshadowed transcriptional changes and were primed for regulation by distinct transcription factors. Transcription factors that controlled each CD8+ T cell subset were regulated by high numbers of enhancers and positioned as hubs of gene networks. FOXP1, a hub in the stem-like network, promoted expansion and stemness of CAR T cells and limited excessive effector differentiation. In the effector network, KLF2 enhanced effector CD8+ T cell differentiation and prevented terminal exhaustion. Thus, we identified gene networks and hub transcription factors that controlled the differentiation of stem-like CD8+ CAR T cells into effector or exhausted CD8+ CAR T cells.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Fatores de Transcrição/genética , Subpopulações de Linfócitos T , Diferenciação Celular , Cromatina
2.
Cell Commun Signal ; 21(1): 214, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596671

RESUMO

Mesenchymal stem cells (MSCs) have emerged as a promising alternative treatment for liver disease due to their roles in regeneration, fibrosis inhibition, and immunoregulation. Mitochondria are crucial in maintaining hepatocyte integrity and function. Mitochondrial dysfunction, such as impaired synthesis of adenosine triphosphate (ATP), decreased activity of respiratory chain complexes, and altered mitochondrial dynamics, is observed in most liver diseases. Accumulating evidence has substantiated that the therapeutic potential of MSCs is mediated not only through their cell replacement and paracrine effects but also through their regulation of mitochondrial dysfunction in liver disease. Here, we comprehensively review the involvement of mitochondrial dysfunction in the development of liver disease and how MSCs can target mitochondrial dysfunction. We also discuss recent advances in a novel method that modifies MSCs to enhance their functions in liver disease. A full understanding of MSC restoration of mitochondrial function and the underlying mechanisms will provide innovative strategies for clinical applications. Video Abstract.


Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Humanos , Hepatopatias/terapia , Mitocôndrias , Membranas Mitocondriais , Trifosfato de Adenosina
3.
Am J Physiol Cell Physiol ; 325(2): C443-C455, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366574

RESUMO

Aging and replicative cellular senescence are associated with the reduced therapeutic potential of mesenchymal stem cells (MSCs) on a variety of diseases. This study aimed to determine the mechanism in MSC senescence and further explore a modification strategy to reverse senescence-associated cell dysfunction to improve the therapeutic efficacy of MSCs on acute liver failure (ALF). We found that the adipose tissue-derived MSCs from old mice (oAMSCs) exhibited senescence phenotypes and showed reduced therapeutic efficacy in lipopolysaccharide and D-galactosamine-induced ALF, as shown by the increased hepatic necrosis, liver histology activity index scores, serum liver function indicator levels, and inflammatory cytokine levels. The expression of miR-17-92 cluster members, especially miR-17 and miR-20a, was obviously decreased in oAMSCs and replicatively senescent AMSCs, and was consistent with the decreased oncogene c-Myc level during AMSC senescence and may mediate c-Myc stemness addiction. Further experiments revealed that c-Myc-regulated miR-17-92 expression contributed to increased p21 expression and redox system dysregulation during AMSC senescence. Furthermore, modification of AMSCs with the two key miRNAs in the miR-17-92 cluster mentioned above reversed the senescence features of oAMSCs and restored the therapeutic effect of senescent AMSCs on ALF. In conclusion, the cellular miR-17-92 cluster level is correlated with AMSC senescence and can be used both as an index for evaluating and as a modification target for improving the therapeutic potential of AMSCs.NEW & NOTEWORTHY We reported for the first time that c-Myc-regulated miR-17-92 contributed to increased p21 expression and redox system dysregulation during AMSC senescence and was associated with the reduced therapeutic effects of senescent AMSCs on ALF. Moreover, modifying the expression of the miR-17-92 cluster members, especially miR-17 and/or miR-20a, could reverse AMSC senescence. Thus, miR-17-92 cluster can be used both as an index for evaluating and as a modification strategy for improving the therapeutic potential of AMSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Envelhecimento/genética , Oxirredução , Estresse Oxidativo , Senescência Celular
4.
Cell Death Differ ; 30(6): 1550-1562, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081115

RESUMO

TRAF2 (Tumor necrosis factor receptor-associated factor 2) is a dual function protein, acting as an adaptor protein and a ubiquitin E3 ligase, which plays an essential role in mediating the TNFα-NFκB signal pathway. Dysregulated expression of TRAF2 has been reported in a variety of human cancers. Whether and how TRAF2 regulates the growth of liver cancer cells remains elusive. The goal of this study is to investigate potential dysregulation of TRAF2 and its biological function in liver cancer, and to elucidate the underlying mechanism, leading to validation of TRAF2 as an attractive liver cancer target. Here, we reported TRAF2 is up-regulated in human liver cancer cell lines and tissues, and high TRAF2 expression is associated with a poor prognosis of HCC patients. Proteomics profiling along with Co-immunoprecipitation analysis revealed that p62 is a new substrate of TRAF2, which is subjected to TRAF2-induced polyubiquitination via the K63 linkage at the K420 residue. A strong negative correlation was found between the protein levels of p62 and TRAF2 in human HCC samples. TRAF2 depletion inhibited growth and survival of liver cancer cells both in vitro and in vivo by causing p62 accumulation, which is partially rescued by simultaneous p62 knockdown. Mechanistically, TRAF2-mediated p62 polyubiquitylation activates the mTORC1 by forming the p62-mTORC1-Rag complex, which facilitates the lysosome localization of mTORC1. TRAF2 depletion inhibited mTORC1 activity through the disruption of interaction between p62 and the mTORC1 complex. In conclusion, our study provides the proof-of-concept evidence that TRAF2 is a valid target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Proliferação de Células , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Antioxidants (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671020

RESUMO

Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.

6.
BMC Infect Dis ; 22(1): 842, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368952

RESUMO

PURPOSE: This study was designed to analyze the liver tissue changes among the CHB patients who received treatment for at least 6 months and follow-up for at least 1 year, together with the correlation between the different disease condition and serum markers. METHODS: One-hundred and eighty-five CHB patients underwent antiviral therapy for at least 6 months were enrolled. In the 12-month follow-up, ultrasonography-guided biopsy was performed. The patients were grouped based on the serum markers and pathological changes in liver tissues. Then we determined the serum markers, virological tests and Tim-3 expression among these groups. RESULTS: Antiviral therapy significantly reduced liver inflammation indicators and serum Tim-3 level. However, the fibrosis process of liver tissue was not changed, and there are still disputes on the serum marker and hepatic lesion outcomes. Under normal liver function or negative hepatitis B e antigen (HBeAg) of CHB patients, there might be consensus between Tim-3 change and liver pathological outcome. According to the liver tissue inflammation and fibrosis conditions, Tim-3 was positively correlated with liver function indices. Besides, it was also related to fibrosis stage and inflammation grade. CONCLUSION: There were inconsistent changes between serum markers and liver tissue conditions after anti-viral therapy. Tim-3 expression was more suitable to indicate the changes of liver inflammatory and fibrosis response to some extent than ALT and AST. It may serve as a certain indicator to predict the CHB prognosis, which could be used as one of the monitoring indicators in liver pathological changes of chronic HBV infection, especially in monitoring liver tissue inflammation.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/uso terapêutico , Antígenos E da Hepatite B , Fígado/patologia , Prognóstico , Inflamação/tratamento farmacológico , Fibrose , Biomarcadores/metabolismo , Antivirais/uso terapêutico , DNA Viral , Alanina Transaminase
7.
Life Sci ; 273: 119304, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662432

RESUMO

AIMS: Necroptosis, an inflammatory form of regulated necrosis mediated by receptor-interacting kinase 1 (RIP1), RIP3, and pseudokinase mixed lineage kinase domain-like protein (MLKL) is extensively implicated in liver inflammatory disease. Thus identification small-molecule inhibitor of necroptosis has emerged as a potential therapeutic strategy to prevent liver damage. In this study, we identified 5-((7-chloro-6-fluoro-1 h-indol-3-yl) methyl)-3-methylimidazolidine-2,4-dione (F-nec) as a novel potent necroptosis inhibitor. MAIN METHODS: To find out the potent chemical inhibitors of necroptosis, human monocytic U937 cells were treated with a combination of tumor necrosis factor alpha (TNFα) and a pan-caspase inhibitor z-VAD-fmk. LPS and D-galactosamine (LPS/GalN) were further employed to simulate acute liver failure to explore therapeutic potency of F-nec in vivo. In addition, a specific inhibitor of c-Jun NH (2)-terminal kinases (JNK) SP600125 and its activator anisomycin are used to elucidate its mechanisms in acute liver failure therapy. Necroptosis pathway related proteins were tested by western blot. KEY FINDINGS: In this study, we identified F-nec as a novel potent RIP1 inhibitor which efficiently blocked TNFα-induced necroptosis in human and mice cells. Furthermore, pre-treatment of F-nec could prevent hepatic necrosis by reducing RIP1-mediated necroptosis also effectively ameliorated LPS/GalN induced acute liver failure by attenuating cell death signaling-stimulated JNK pathway activation and then suppressing JNK-triggered inflammation. SIGNIFICANCE: Altogether, this study demonstrates that F-nec is a potent inhibitor of RIP1 and highlights its great potential for use in the treatment of RIP1-driven inflammatory liver diseases.


Assuntos
Proteínas Ativadoras de GTPase/antagonistas & inibidores , Galactosamina/toxicidade , Indóis/química , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Necroptose , Substâncias Protetoras/farmacologia , Animais , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células U937
8.
J Exp Clin Cancer Res ; 40(1): 53, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526055

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers with high incidence and mortality. However, the underlying mechanisms of HCC still remain unclear. Eukaryotic translation initiation factors (eIFs) have a substantial effect on tumor development. In this study, we were aimed to investigate the role of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) in HCC. METHODS: Western blot (WB) of 30 paired HCC tissues and tissue microarrays (TMAs) conducted by immunohistochemistry (IHC) in 89 paired HCC samples were performed to assess EIF4G2 expression. Clone formation, real-time cell analysis (RTCA), wound healing and transwell assays were adopted to evaluate the role of EIF4G2 on HCC cell proliferation, migration and invasion abilities. The function of EIF4G2 in HCC tumor growth was assessed in a xenograft nude mouse model in vivo. The regulation of EIF4G2 by miR-144-3p was performed by luciferase reporter assay and WB. RESULTS: The EIF4G2 protein was clearly upregulated in HCC tissues, and high EIF4G2 expression was closely related to HCC prognosis. EIF4G2 silencing could inhibit HCC cell growth and metastasis in vitro, and suppress tumorigenesis in vivo by repressing the ERK signaling pathway. The results of luciferase reporter assays, WB and IHC staining verified that EIF4G2 was negatively regulated by miR-144. And re-expression of EIF4G2 could partially reverse the inhibiting effect of miR-144 in HCC. CONCLUSION: In summary, our study revealed the role of EIF4G2 in HCC development via the activation of the ERK pathway. We also found that EIF4G2 could be negatively regulated by the tumor suppressor miR-144. Our investigations indicated that EIF4G2 might be a promising therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA
9.
Nat Immunol ; 22(3): 370-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574619

RESUMO

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Assuntos
Infecções por Arenaviridae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Epigênese Genética , Células Precursoras de Linfócitos T/metabolismo , Transcrição Gênica , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem da Célula , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Precursoras de Linfócitos T/imunologia , Células Precursoras de Linfócitos T/virologia , Transdução de Sinais
10.
J Cell Mol Med ; 25(2): 840-854, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263949

RESUMO

Hepatitis B virus (HBV) infection is a major public health problem. The high levels of HBV DNA and HBsAg are positively associated with the development of secondary liver diseases, including hepatocellular carcinoma (HCC). Current treatment with nucleos(t)ide analogues mainly reduces viral DNA, but has minimal, if any, inhibitory effect on the viral antigen. Although IFN reduces both HBV DNA and HBsAg, the serious associated side effects limit its use in clinic. Thus, there is an urgent demanding for novel anti-HBV therapy. In our study, viral parameters were determined in the supernatant of HepG2.2.15 cells, HBV-expressing Huh7 and HepG2 cells which transfected with HBV plasmids and in the serum of HBV mouse models with hydrodynamic injection of pAAV-HBV1.2 plasmid. RT-qPCR and Southern blot were performed to detect 35kb mRNA and cccDNA. RT-qPCR, Luciferase assay and Western blot were used to determine anti-HBV effects of MLN4924 and the underlying mechanisms. We found that treatment with MLN4924, the first-in-class neddylation inhibitor currently in several phase II clinical trials for anti-cancer application, effectively suppressed production of HBV DNA, HBsAg, 3.5kb HBV RNA as well as cccDNA. Mechanistically, MLN4924 blocks cullin neddylation and activates ERK to suppress the expression of several transcription factors required for HBV replication, including HNF1α, C/EBPα and HNF4α, leading to an effective blockage in the production of cccDNA and HBV antigen. Our study revealed that neddylation inhibitor MLN4924 has impressive anti-HBV activity by inhibiting HBV replication, thus providing sound rationale for future MLN4924 clinical trial as a novel anti-HBV therapy.


Assuntos
Ciclopentanos/farmacologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Fator 4 Nuclear de Hepatócito/metabolismo , Pirimidinas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Southern Blotting , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ciclopentanos/uso terapêutico , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Pirimidinas/uso terapêutico , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
11.
Mol Med Rep ; 22(2): 1449-1457, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32626943

RESUMO

Liver cancer stem cells (CSCs) are functionally defined by their ability to undergo self­renewal, and may contribute to metastasis, recurrence and drug resistance in liver cancer. The long non­coding RNA metastasis­associated lung adenocarcinoma transcript 1 (MALAT1) has been implicated in tumor formation and metastasis of liver cancer. However, the exact mechanism by which MALAT1 modulates liver CSC features remains largely unknown. In the present study, the expression level of MALAT1 was elevated in cancer spheroids compared with the corresponding levels noted in parental liver cancer cells, whereas the suppression of MALAT1 resulted in markedly reduced sphere formation and decreased expression of stemness factors in liver cancer cells. Dual­luciferase assay and RNA pull­down assays further indicated an interaction between MALAT1 and microRNA (miR)­375, and identified Yes­associated protein 1 (YAP1) as a direct target of miR­375 in liver cancer cells. In addition, YAP1 expression was correlated with MALAT1 in liver cancer. The reduced expression of YAP1 caused by knockdown of MALAT1 with MALAT1 small interfering RNA (si­MALAT1) could be partially abolished by miR­375 inhibition, suggesting that MALAT1 may regulate YAP1 expression by sponging miR­375. Furthermore, YAP1 overexpression rescued the decrease in CSC features of liver cancer cells caused by si­MALAT1, further supporting that MALAT1­mediated YAP1 signaling was required for the stem­like characteristics of liver CSCs. The present study revealed that MALAT1 may promote CSC properties of liver cancer cells by upregulating YAP1 expression via sponging miR­375. The MALAT1/miR­375/YAP1 axis may serve as a novel target for liver cancer therapy, particularly for the eradication of liver CSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Sinalização YAP
12.
Infect Genet Evol ; 84: 104331, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353512

RESUMO

BACKGROUND: Interleukin-6 (IL-6) plays an important role in chronic inflammation. Thus, we aimed to investigate the effects of IL-6 polymorphisms on predicting the progression of hepatitis B virus (HBV)-r elated liver cirrhosis. METHODS: A cross-sectional study was conducted to analyse IL-6 polymorphisms and serum levels of IL-6 in HBV-infected patients at different clinical phases and in healthy controls. IL-6 polymorphisms were detected by the TaqMan PCR method, and plasma IL-6 levels were assessed by ELISA. RESULTS: Our analysis included 182 chronic hepatitis B (CHB) patients, 190 HBV-infected liver cirrhosis cases, 125 inactive HBsAg carriers, and 246 healthy controls. Seven SNPs in IL-6 including rs10499563, rs17147230, rs1800796, rs2069837, rs1524107, rs2066992, and rs2069852 were analysed. In a haplotype analysis between HBV-infected liver cirrhosis cases and CHB patients, inactive HBV carriers or healthy controls, haplotype CT in block 1 and haplotype GGCGG in block 2 were associated with liver cirrhosis (P <0.05). Moreover, the genotype or allele frequencies were significantly different in IL-6 rs10499563 and rs2069837 when HBV-infected liver cirrhosis patients were compared with CHB patients, inactive HBV carriers or healthy controls. A further study found that compared with that in the healthy controls, inactive HBV carriers or CHB patients, plasma IL-6 was elevated in HBV-infected liver cirrhosis patients. CONCLUSION: In conclusion, the IL-6 rs10499563 and rs2069837 polymorphisms are associated with incidence of liver cirrhosis may through their effects on IL-6 expression and these two single nucleotide polymorphisms can be used as potential prognostic markers of HBV-related liver cirrhosis.


Assuntos
Hepatite B Crônica/genética , Interleucina-6/genética , Cirrose Hepática/virologia , Polimorfismo de Nucleotídeo Único , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Estudos Transversais , Haplótipos , Hepatite B Crônica/complicações , Hepatite B Crônica/epidemiologia , Humanos , Desequilíbrio de Ligação , Cirrose Hepática/epidemiologia , Cirrose Hepática/genética , Pessoa de Meia-Idade
13.
J Exp Clin Cancer Res ; 39(1): 4, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898515

RESUMO

BACKGROUND: MiR-199a-3p (miR-199a) can enhance the chemosensitivity of hepatocellular carcinoma (HCC). Because of the easy degradation of miRNA by direct infusion, effective vehicle-mediated delivery of miR-199a may represent a new strategy for improving HCC chemotherapy. Considering mesenchymal stem cell (MSC)-derived exosomes as promising natural nanovectors for drug and molecule delivery, we aimed to determine whether exosomes from adipose tissue-derived MSCs (AMSCs) could be used to deliver miR-199a and improve HCC chemosensitivity. METHODS: MiR-199a-modified AMSCs (AMSC-199a) were constructed by miR-199a lentivirus infection and puromycin selection. MiR-199-modified exosomes (AMSC-Exo-199a) were isolated from the supernatant of AMSC-199a and were assessed by transmission electron microscopy, nanoparticle tracking analysis, and flow cytometry analysis. The expression levels of miR-199a in HCC samples, AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The effects of AMSC-Exo-199a on HCC chemosensitivity were determined by cell proliferation and apoptosis assays and by i.v. injection into orthotopic HCC mouse models with doxorubicin treatment. MTOR, p-4EBP1 and p-70S6K levels in HCC cells and tissues were quantified by Western blot. RESULTS: AMSC-Exo-199a had the classic characteristics of exosomes and could effectively mediate miR-199a delivery to HCC cells. Additionally, AMSC-Exo-199a significantly sensitized HCC cells to doxorubicin by targeting mTOR and subsequently inhibiting the mTOR pathway. Moreover, i.v.-injected AMSC-Exo-199a could distribute to tumor tissue and markedly increased the effect of Dox against HCC in vivo. CONCLUSIONS: AMSC-Exo-199a can be an effective vehicle for miR-199a delivery, and they effectively sensitized HCC to chemotherapeutic agents by targeting mTOR pathway. AMSC-Exo-199a administration may provide a new strategy for improving HCC chemosensitivity.


Assuntos
Tecido Adiposo/citologia , Carcinoma Hepatocelular/terapia , Doxorrubicina/administração & dosagem , Exossomos/transplante , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Exossomos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Injeções Intravenosas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Am J Transl Res ; 11(6): 3555-3566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312366

RESUMO

Hepatocellular Carcinoma (HCC) lacks effective anti-metastasis drugs. Traditional Chinese Medicine (TCM) monomers have shown anti-proliferation activity in HCC, but few of them are specifically anti-metastasis. Therefore, further clarifying the indicators of HCC metastasis and screening TCM monomers based on the indicators, will effectively guide the development of novel anti-HCC drugs. The perinucleolar compartment (PNC), existing in the nuclear of tumor cells, is closely correlated with metastasis of several tumors. In this study, we found positive correlation between higher PNC prevalence and metastasis in HCC tissue of patients. The PNC prevalence was also positively correlated with the malignancy of HCC cell lines. On this premise, we established a PNC-based screening system for anti-metastasis TCM monomers and obtained Camptothecin (CPT), Evodiamine and Isoglycyrrhizin, the three most effective TCM monomers from a TCM monomer library to reduce the PNC prevalence in Huh7 cells. The anti-metastasis effect of these TCM monomers was positively correlated with their PNC inhibitor effect. Our data further revealed that CPT reduced metastasis of Huh7 cells possibly by inhibiting Epithelial-Mesenchymal Transition by upregulating the expression of ZO-1, E-cadherin and Claudin-1. The PNC-based screening system is effective and it may provide an effective technical platform for the development of anti-metastasis drugs.

15.
Cell Physiol Biochem ; 50(5): 1794-1803, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30396164

RESUMO

BACKGROUND/AIMS: To investigate the relationship between elevated serum procalcitonin (PCT) and renal function in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). METHODS: HBV-ACLF patients (n = 201) presenting to the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, from January 2013 to November 2016 were categorized into three groups according to serum PCT levels: (i) normal group (n = 74) had PCT of ≤ 0.5 ng/mL; (ii) elevated group (n = 85) had PCT in the range 0.5-1.0 ng/mL; and (iii) highly elevated group (n = 42) had PCT of > 1.0 ng/mL. Thirty-five cases received standard care after admission. Serum PCT levels and renal function were determined during a two-week follow-up. RESULTS: Significant increases in serum creatinine (Cr) were recorded in male and female patients in the elevated group and highly elevated group compared with the normal group (P < 0.05). In addition, serum Cr levels in male and female patients were significantly higher in the highly elevated group than in the elevated group (P < 0.05). The glomerular filtration rate (GFR) was significantly lower in the highly elevated group (P < 0.05) and this group had the highest risk of altered Cr (45.9% in males; 80% in females) and abnormal GFR (37.5%). Serum PCT levels correlated significantly with all renal function parameters including homocysteine (Hcy), GFR, Cr, blood urea nitrogen, uric acid, and cystatin C at baseline and during treatment. Univariate and multivariate analyses indicated that serum PCT was a strong predictor of renal dysfunction. CONCLUSION: Serum PCT is closely related to renal dysfunction in HBV-ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada/diagnóstico , Calcitonina/sangue , Hepatite B/diagnóstico , Rim/metabolismo , Insuficiência Hepática Crônica Agudizada/complicações , Insuficiência Hepática Crônica Agudizada/patologia , Insuficiência Hepática Crônica Agudizada/terapia , Adulto , Área Sob a Curva , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Cistatina C/sangue , DNA Viral/sangue , Feminino , Taxa de Filtração Glomerular , Hepatite B/complicações , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/isolamento & purificação , Vírus da Hepatite B/metabolismo , Homocisteína/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Risco
16.
J Cell Mol Med ; 22(12): 6167-6175, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30338914

RESUMO

The aberrant expression of Pknox1 is associated with hepatic glucose and lipid dysmetabolism status of type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism causing Pknox1 overexpression in this pathological status remains unclear. By using miRNA target prediction programs, we found that the 3'-UTR of the Pknox1 mRNA sequence contains highly conserved target sites of miR-17 family. In a rat model of streptozotocin and high-fat diet-induced T2DM and NAFLD complication, the increased hepatic expression of Pknox1 was consistent with decreased expressions of miR-17 family, especially miR-17 and miR-20a. Furthermore, an inverse correlation was observed between Pknox1 and miR-17 and miR-20a in free fatty acids-induced hepatocyte steatosis. Dual-luciferase reporter assay further showed that Pknox1 was a valid target gene of miR-17 family. The ectopic expression of miR-17 or miR-20a could markedly suppress Pknox1 expression in hepatocytes. MiR-17 or miR-20a overexpression also resulted in significantly enhanced insulin sensitivity and reduced hepatocyte steatosis in HepG2 and L02 cells, which were determined by altered phosphorylation on insulin receptor signaling pathway proteins and decreased intracellular triglyceride and lipid accumulation, respectively. These data implicate the upregulated hepatic expression of Pknox1 in T2DM complicated with NAFLD may be caused by the reduced expression of miR-17 family, indicating that developing miRNA-mediated regulation strategies on Pknox1 may provide new therapeutic options for metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fígado Gorduroso/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Insulina/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Transdução de Sinais/genética
17.
EBioMedicine ; 36: 140-150, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30197023

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosome administration has been considered as a novel cell-free therapy for liver diseases through cell-cell communication. This study was aimed to determine the effects and mechanisms of AMSC-derived exosomes (AMSC-Exo) for acute liver failure (ALF) treatment. METHODS: AMSC-Exo were intravenously administrated into the mice immediately after lipopolysaccharide and D-galactosamine (LPS/GalN)-exposure and their effects were evaluated by liver histological and serum biochemical analysis. To elucidate its mechanisms in ALF therapy, the expression levels of miRNAs and inflammasome-related genes in macrophages were evaluated by qPCR and Western blot analysis, respectively. The exosomes from miR-17-knockdowned AMSCs (AMSC-ExomiR-17-KD) were used for further determine the role of miR-17 in AMSC-Exo-based therapy. FINDINGS: AMSC-Exo administration significantly ameliorated ALF as determined by reduced serum alanine aminotransferase and aspartate aminotransferase levels and hepatic inflammasome activation. Further experiments revealed that AMSC-Exo were colocalized with hepatic macrophages and could reduce inflammatory factor secretion by suppressing inflammasome activation in macrophages. Moreover, miR-17, which can suppress NLRP3 inflammasome activation by targeting TXNIP, was abundant in AMSC-Exo cargo. While, the therapeutic effects of AMSC-ExomiR-17-KD on ALF were significantly abolished as they could not effectively suppress TXNIP expression and consequent inflammasome activation in vitro and in vivo. INTERPRETATION: Exosome-shuttled miR-17 plays an essential role in AMSC-Exo therapy for ALF by targeting TXNIP and suppressing inflammasome activation in hepatic macrophages. AMSC-Exo-based therapy may present as a promising approach for TXNIP/NLRP3 inflammasome-related inflammatory liver diseases. FUND: Key R&D projects of Zhejiang province (2018C03019) and National Natural Science Fund (81470851 and 81500616).


Assuntos
Proteínas de Transporte/metabolismo , Exossomos/metabolismo , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tiorredoxinas/metabolismo , Animais , Biomarcadores , Comunicação Celular , Modelos Animais de Doenças , Galactosamina/efeitos adversos , Inflamassomos/metabolismo , Lipopolissacarídeos/efeitos adversos , Falência Hepática Aguda/patologia , Falência Hepática Aguda/terapia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos
18.
Exp Mol Med ; 50(9): 1-12, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258086

RESUMO

MiRNAs are small, noncoding RNAs, which can regulate gene expression posttranscriptionally, and they have emerged as key factors in disease biology by aiding in disease development and progression. MiR-223 is highly conserved during evolution and it was first described as a modulator of hematopoietic lineage differentiation. MiR-223 has an essential part in inflammation by targeting the nuclear factor-κB pathway and the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome. Recent studies have shown that miR-223 expression is deregulated in various types of liver diseases, including hepatitis virus infections, alcohol-induced liver injury, drug-induced liver injury, non-alcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. As inflammatory and immune factors are involved in the occurrence and progress of liver diseases, deregulated miR-223 may participate in the pathogenesis of these conditions by influencing neutrophil infiltration, macrophage polarization, and inflammasome activation. This review first summarizes the present understanding of the biological functions of miR-223, including its gene location and transcription regulation, as well as its physiological role in hematopoietic differentiation. This review then focuses on the role of miR-223 in liver pathophysiology and its potential applications as a diagnostic biomarker and therapeutic target in liver diseases.


Assuntos
Hepatopatias/genética , Hepatopatias/fisiopatologia , MicroRNAs/genética , Animais , Humanos , MicroRNAs/metabolismo
19.
Cell Physiol Biochem ; 47(3): 1133-1140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913443

RESUMO

BACKGROUND/AIMS: Serum procalcitonin (PCT) is elevated in acute liver failure (ALF), but the expression of PCT in the liver has not been elucidated. We aimed to clarify the regulation of hepatic PCT expression and the cell sources in ALF. METHODS: Human monocytic leukemia line U937 cells were treated with 12-O-tetradecanoylphorbol-l3-acetate (PMA) (100 ng/ mL) for 24 h to induce activated macrophages. In the presence of lipopolysaccharide (LPS, 1 µg/mL), activated macrophages and human hepatocyte line L02 cells were incubated with LPS or co-cultured for 0, 2, 6, and 24 h. In an in vivo experiment, male C57BL/6 mice were challenged with intraperitoneal LPS/D-galactosamine (LPS/D-GalN). Serum liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using an automatic chemical analyzer. Inflammatory mediators were measured by real-time PCR and liver histology was examined by hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). RESULTS: LPS induced the upregulation of PCT mRNA in U937-activated macrophages but not in L02 cells. When co-cultured with L02 cells, the expression of PCT mRNA of activated macrophages was upregulated compared to controls; however, the activated macrophages did not induce the expression of PCT mRNA in L02 cells in the presence of LPS. Moreover, serum liver enzymes (ALT, AST), inflammation, necrosis, and hepatic expression of PCT were significantly elevated in the LPS/D-GalN-challenged ALF mouse model. IHC revealed that PCT expression was co-localized with hepatic macrophages. CONCLUSIONS: Hepatic PCT expression is upregulated in ALF. Hepatic macrophages but not hepatocytes are the cell source of hepatic PCT expression.


Assuntos
Calcitonina/biossíntese , Falência Hepática Aguda/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Regulação para Cima , Animais , Humanos , Lipopolissacarídeos/toxicidade , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Macrófagos/patologia , Masculino , Camundongos , Acetato de Tetradecanoilforbol/farmacologia , Células U937
20.
FASEB J ; 31(12): 5453-5465, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28821631

RESUMO

Hepatocellular carcinoma (HCC) is the third leading form of cancer worldwide, and its incidence is increasing rapidly in the United States, tripling over the past 3 decades. The current chemotherapeutic strategies against localized and metastatic HCC are ineffective. Here we report that 6-methoxyethylamino-numonafide (MEAN) is a potent growth inhibitor of murine xenografts of 2 human HCC cell lines. At the same dose and with the same treatment strategies, MEAN was more efficacious in inhibiting tumor growth in mice than sorafenib, the only approved drug for HCC. Treatment by MEAN at an effective dose for 6 wk was well tolerated by animals. Combined therapy using both sorafenib and MEAN enhanced tumor growth inhibition over monotherapy with either agent. Additional experiments revealed that MEAN inhibited tumor growth through mechanisms distinct from those of either its parent compound, amonafide, or sorafenib. MEAN suppressed C-MYC expression and increased expression of several tumor suppressor genes, including Src homology region 2 domain-containing phosphatase-1 (SHP-1) and TXNIP (thioredoxin-interacting protein). As an encouraging feature for envisioned clinical application, the IC50 of MEAN was not significantly changed in several drug-resistant cell lines with activated P-glycoprotein drug efflux pumps compared to drug-sensitive parent cells, demonstrating the ability of MEAN to be effective in cells resistant to existing chemotherapy regimens. MEAN is a promising candidate for clinical development as a single-agent therapy or in combination with sorafenib for the management of HCC.-Liu, Y., Lou, G., Norton, J. T., Wang, C., Kandela, I., Tang, S., Shank, N. I., Gupta, P., Huang, M., Avram, M. J., Green, R., Mazar, A., Appella, D., Chen, Z., Huang, S. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Naftalimidas/uso terapêutico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Alanina Transaminase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Western Blotting , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Niacinamida/uso terapêutico , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA