Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 384: 129319, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315620

RESUMO

Microbial community is the primary driver causing the greenhouse gas emissions in composting. Thus, regulating the microbial communities is a strategy to reduce them. Here, two different siderophores (enterobactin and putrebactin) were added, which could bind and translocate iron by specific microbes, to regulate the composting communities. The results showed that adding enterobactin enriched Acinetobacter and Bacillus with specific receptors by 6.84-fold and 6.78-fold. It promoted carbohydrate degradation and amino acid metabolism. This resulted in a 1.28-fold increase in humic acid content, as well as a 14.02% and 18.27% decrease in CO2 and CH4 emissions, respectively. Meanwhile, adding putrebactin boosted the microbial diversity by 1.21-fold and enhanced potential microbial interactions by 1.76-fold. The attenuated denitrification process led to a 1.51-fold increase in the total nitrogen content and a 27.47% reduction in N2O emissions. Overall, adding siderophores is an efficient strategy to reduce greenhouse gas emissions and promote the compost quality.


Assuntos
Compostagem , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Sideróforos , Enterobactina , Metano/análise , Nitrogênio/análise , Solo/química , Óxido Nitroso/análise , Dióxido de Carbono/análise , Esterco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA