Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (135)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29889209

RESUMO

Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).


Assuntos
Encéfalo/cirurgia , Cânula/estatística & dados numéricos , Cateterismo/métodos , Cisterna Magna/cirurgia , Animais , Encéfalo/patologia , Camundongos , Roedores
2.
J Neurosci ; 32(10): 3333-8, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22399755

RESUMO

Spinal cord injury (SCI) is often complicated by secondary injury as a result of the innate inflammatory response to tissue trauma and swelling. Previous studies have shown that excessive ATP release from peritraumatic regions contributes to the inflammatory response to SCI by activation of low-affinity P2X7 receptors. Because connexin hemichannels constitute an important route for astrocytic ATP release, we here evaluated the impact on post-traumatic ATP release of deletion of connexins (Cx30/Cx43) in astrocytes. In vivo bioluminescence imaging showed a significant reduction in ATP release after weight-drop injury in mice with deletion of Cx43 compared with Cx43-expressing littermates, both on a Cx30 knockout background. Moreover, astrogliosis and microglia activation were reduced in peritraumatic areas of those mice lacking Cx43; motor recovery was also significantly improved, and the traumatic lesion was smaller. Combined, these observations are consistent with a contribution by astrocytic hemichannels to post-traumatic ATP release that aggravates secondary injury and restrains functional recovery after experimental spinal cord injury. Connexins may thereby constitute a new therapeutic target in spinal cord injury.


Assuntos
Conexina 43/fisiologia , Traumatismos da Medula Espinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Conexina 43/biossíntese , Conexina 43/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
3.
J Neurosci ; 28(3): 681-95, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18199768

RESUMO

Preconditioning is an endogenous mechanism in which a nonlethal exposure increases cellular resistance to subsequent additional severe injury. Here we show that connexin 43 (Cx43) plays a key role in protection afforded by preconditioning. Cx43 null mice were insensitive to hypoxic preconditioning, whereas wild-type littermate mice exhibited a significant reduction in infarct volume after occlusion of the middle cerebral artery. In cultures, Cx43-deficient cells responded to preconditioning only after exogenous expression of Cx43, and protection was attenuated by small interference RNA or by channel blockers. Our observations indicate that preconditioning reduced degradation of Cx43, resulting in a marked increase in the number of plasma membrane Cx43 hemichannels. Consequently, efflux of ATP through hemichannels led to accumulation of its catabolic product adenosine, a potent neuroprotective agent. Thus, adaptive modulation of Cx43 can offset environmental stress by adenosine-mediated elevation of cellular resistance.


Assuntos
Conexina 43/fisiologia , Precondicionamento Isquêmico , Regulação para Cima/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Sobrevivência Celular , Células Cultivadas , Conexina 43/deficiência , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , RNA Interferente Pequeno/uso terapêutico , Ratos , Fatores de Tempo , Transfecção/métodos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA