Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(49): 9129-9141, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270801

RESUMO

HuR is an RNA-binding protein implicated in RNA processing, stability, and translation. Previously, we examined protein synthesis in dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We found that the HuR consensus binding element was enriched in transcripts with elevated translation. HuR is expressed in the soma of nociceptors and their axons. Pharmacologic inhibition of HuR with the small molecule CMLD-2 reduced the activity of mouse and human sensory neurons. Peripheral administration of CMLD-2 in the paw or genetic elimination of HuR from sensory neurons diminished behavioral responses associated with NGF- and IL-6-induced allodynia in male and female mice. Genetic disruption of HuR altered the proximity of mRNA decay factors near a key neurotrophic factor (TrkA). Collectively, the data suggest that HuR is required for local control of mRNA stability and reveals a new biological function for a broadly conserved post-transcriptional regulatory factor.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in excitability, which may contribute to chronic pain. Noxious cues that promote pain lead to rapid induction of protein synthesis. The underlying mechanisms that confer specificity to mRNA control in nociceptors are unclear. Here, we identify a conserved RNA-binding protein called HuR as a key regulatory factor in sensory neurons. Using a combination of genetics and pharmacology, we demonstrate that HuR is required for signaling in nociceptors. In doing so, we report an important mechanism of mRNA control in sensory neurons that ensures appropriate nociceptive responses to inflammatory mediators.


Assuntos
Proteína Semelhante a ELAV 1 , Nociceptores , Animais , Feminino , Humanos , Masculino , Camundongos , Dor Crônica/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
2.
Nat Commun ; 12(1): 6789, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815424

RESUMO

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Corpos de Processamento/metabolismo , Ribossomos/metabolismo , Animais , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Quinase do Fator 2 de Elongação/genética , Gânglios Espinais/citologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Nelfinavir/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura
3.
J Neurosci ; 39(3): 393-411, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30459229

RESUMO

Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase (MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, a GTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.SIGNIFICANCE STATEMENT Neuropathic pain affects up to 10% of the population, but its underlying mechanisms are incompletely understood, leading to poor treatment outcomes. We used translating ribosome affinity purification technology to create a comprehensive translational profile of DRG nociceptors in naive mice and at the peak of neuropathic pain induced by paclitaxel treatment. We reveal new insight into how mechanistic target of rapamycin complex 1 is activated in neuropathic pain pointing to a key role of MNK1-eIF4E-mediated translation of a complex of mRNAs that control mechanistic target of rapamycin complex 1 signaling at the surface of the lysosome. We validate this finding using genetic and pharmacological techniques. Our work strongly suggests that MNK1-eIF4E signaling drives CIPN and that a drug in human clinical trials, eFT508, may be a new therapeutic for neuropathic pain.


Assuntos
Perfilação da Expressão Gênica , Camundongos Knockout/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neuralgia/genética , Nociceptores , Animais , Antineoplásicos Fitogênicos , Fator de Iniciação 4E em Eucariotos/genética , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuralgia/induzido quimicamente , Neuralgia/psicologia , Paclitaxel , Medição da Dor , Proteínas Serina-Treonina Quinases/genética , Ribossomos/química , Transdução de Sinais/genética
4.
Nat Commun ; 9(1): 10, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295980

RESUMO

Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.


Assuntos
Dor/metabolismo , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Gânglios Espinais/citologia , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor Nociceptiva/metabolismo , Dor Nociceptiva/prevenção & controle , Dor/prevenção & controle , Medição da Dor , Poli A/química , Poli A/farmacologia , Proteínas de Ligação a Poli(A)/química , Ligação Proteica , RNA/química , RNA/farmacologia
5.
Cancer Prev Res (Phila) ; 9(1): 43-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26511490

RESUMO

In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA), in cancer cells-undetectable in normal lung epithelium. NAA's cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA's cancer specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N = 577), with minimal expression in all nonmalignant lung tissues (N = 74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA's clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N = 13) in comparison with age-matched healthy controls (N = 21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression, and its extracellular secretion can be detected in blood. Cancer Prev Res; 9(1); 43-52. ©2015 AACR.


Assuntos
Acetiltransferases/sangue , Ácido Aspártico/análogos & derivados , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Acetiltransferases/metabolismo , Adulto , Idoso , Ácido Aspártico/sangue , Barreira Hematoencefálica , Carcinoma Pulmonar de Células não Pequenas/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA
6.
Exp Biol Med (Maywood) ; 235(11): 1385-94, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20975082

RESUMO

Fetal hemoglobin (HbF) ameliorates the clinical severity of sickle cell disease; therefore continued research to identify efficacious HbF-inducing agents is desirable. In this study, we investigated KU812 leukemia cells that express the fetal γ-globin and adult ß-globin genes, as a system for screening and discovery of novel HbF inducers. KU812 cells were analyzed in the presence or absence of fetal bovine serum and then expression levels of the globin genes, cell surface markers and transcription factors were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). For comparison, primary erythroid cells were grown in a two-phase liquid culture system. After drug inductions for 48-72 h, globin mRNA and HbF levels were quantified by RT-qPCR and enzyme-linked immunosorbent assay, respectively. Erythroid markers and transcription factors expression levels in KU812 cells were comparable to days 7-14 erythroid cells. We also tested several drugs including butyrate, trichostatin A, scriptaid, suberoylanilide hydroxamic acid and hydroxyurea, which induced γ-globin in KU812 cells; however, some agents also induced ß-globin. A novel agent STI-571 was studied in the system, which non-selectively induced the globin genes. Additional studies showed comparable globin gene response patterns in KU812 and primary erythroid cells after treatments with the various drug inducers. Mechanisms of drug-mediated γ-globin induction in KU812 cells require signaling through the p38 mitogen-activated protein kinase pathway similar to that previously demonstrated in primary erythroid cells. These data suggest that KU812 cells serve as a good screening system to identify potential HbF inducers for the treatment of ß-hemoglobinopathies.


Assuntos
Linhagem Celular Tumoral , Hemoglobina Fetal/genética , Antígenos de Superfície/metabolismo , Benzamidas , Butiratos/farmacologia , Diferenciação Celular/genética , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Hidroxilaminas/farmacologia , Hidroxiureia/farmacologia , Mesilato de Imatinib , Células K562 , Piperazinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Vorinostat , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
7.
Oligonucleotides ; 13(5): 313-24, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15000822

RESUMO

Two sets of 20-mer phosphorothioate-modified oligodeoxynucleotide DNAs (sODN) and 21-mer or 22-mer small interfering RNAs (siRNAs), targeted to the same coding sites in raf-1 mRNA, were compared for their abilities to reduce the amount of endogenously expressed Raf-1 protein in T24 cells. The amount of Raf-1 protein was monitored by careful quantitation of Western blots. We found that the siRNAs were somewhat less effective than the S-ODNs in reducing the Raf-1 protein level 20 hours after a 4-hour transfection. The siRNA duplexes were characterized by circular dichroism (CD) spectra, and melting temperatures (Tm) were obtained for the siRNA duplexes and DNA x RNA hybrids formed by the S-ODNs. The S-ODNs differed in their effectiveness, the S-ODN that formed the more stable hybrid being the more effective in reducing the Raf-1 protein level, but the two siRNAs were equally effective despite a difference in Tm of about 20 degrees C. Finally, the siRNAs and S-ODNs had a comparable nonspecific effect on a nontargeted (Bcl-2) protein. Our data add to others in the literature that show it can be difficult to select siRNAs that are more effective than antisense ODNs in downregulating endogenously expressed proteins.


Assuntos
Regulação Enzimológica da Expressão Gênica , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Proto-Oncogênicas c-raf/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Tionucleotídeos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Dicroísmo Circular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Termodinâmica , Transfecção , Neoplasias da Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA