Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Heart Fail ; 22(7): 1263-1272, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975494

RESUMO

AIMS: Treatment options for patients with non-obstructive hypertrophic cardiomyopathy (HCM) are limited. We sought to determine whether biventricular (BiV) pacing improves exercise capacity in HCM patients, and whether this is via augmented diastolic filling. METHODS AND RESULTS: Thirty-one patients with symptomatic non-obstructive HCM were enrolled. Following device implantation, patients underwent detailed assessment of exercise diastolic filling using radionuclide ventriculography in BiV and sham pacing modes. Patients then entered an 8-month crossover study of BiV and sham pacing in random order, to assess the effect on exercise capacity [peak oxygen consumption (VO2 )]. Patients were grouped on pre-specified analysis according to whether left ventricular end-diastolic volume increased (+LVEDV) or was unchanged/decreased (-LVEDV) with exercise at baseline. Twenty-nine patients (20 male, mean age 55 years) completed the study. There were 14 +LVEDV patients and 15 -LVEDV patients. Baseline peak VO2 was lower in -LVEDV patients vs. +LVEDV patients (16.2 ± 0.9 vs. 19.9 ± 1.1 mL/kg/min, P = 0.04). BiV pacing significantly increased exercise ΔLVEDV (P = 0.004) and Δstroke volume (P = 0.008) in -LVEDV patients, but not in +LVEDV patients. Left ventricular ejection fraction and end-systolic elastance did not increase with BiV pacing in either group. This translated into significantly greater improvements in exercise capacity (peak VO2 + 1.4 mL/kg/min, P = 0.03) and quality of life scores (P = 0.02) in -LVEDV patients during the crossover study. There was no effect on left ventricular mechanical dyssynchrony in either group. CONCLUSION: Symptomatic patients with non-obstructive HCM may benefit from BiV pacing via augmentation of diastolic filling on exercise rather than contractile improvement. This may be due to relief of diastolic ventricular interaction. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT00504647.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Marca-Passo Artificial , Estimulação Cardíaca Artificial , Dispositivos de Terapia de Ressincronização Cardíaca , Cardiomiopatia Hipertrófica/terapia , Estudos Cross-Over , Diástole , Tolerância ao Exercício , Feminino , Insuficiência Cardíaca/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Volume Sistólico , Função Ventricular Esquerda
2.
Am J Clin Nutr ; 111(1): 79-89, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599928

RESUMO

BACKGROUND: Inorganic nitrate, abundant in leafy green vegetables and beetroot, is thought to have protective health benefits. Adherence to a Mediterranean diet reduces the incidence and severity of coronary artery disease, whereas supplementation with nitrate can improve submaximal exercise performance. Once ingested, oral commensal bacteria may reduce nitrate to nitrite, which may subsequently be reduced to nitric oxide during conditions of hypoxia and in the presence of "nitrite reductases" such as heme- and molybdenum-containing enzymes. OBJECTIVE: We aimed to explore the putative effects of inorganic nitrate and nitrite on mitochondrial function in skeletal muscle. METHODS: Mice were subjected to a nitrate/nitrite-depleted diet for 2 wk, then supplemented with sodium nitrate, sodium nitrite, or sodium chloride (1 g/L) in drinking water ad libitum for 7 d before killing. Skeletal muscle mitochondrial function and expression of uncoupling protein (UCP) 3, ADP/ATP carrier protein (AAC) 1 and AAC2, and pyruvate dehydrogenase (PDH) were assessed by respirometry and Western blotting. Studies were also undertaken in human skeletal muscle biopsies from a cohort of coronary artery bypass graft patients treated with either sodium nitrite (30-min infusion of 10 µmol/min) or vehicle [0.9% (wt:vol) saline] 24 h before surgery. RESULTS: Neither sodium nitrate nor sodium nitrite supplementation altered mitochondrial coupling efficiency in murine skeletal muscle, and expression of UCP3, AAC1, or AAC2, and PDH phosphorylation status did not differ between the nitrite and saline groups. Similar results were observed in human samples. CONCLUSIONS: Sodium nitrite failed to improve mitochondrial metabolic efficiency, rendering this mechanism implausible for the purported exercise benefits of dietary nitrate supplementation. This trial was registered at clinicaltrials.gov as NCT04001283.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nitratos/administração & dosagem , Nitritos/administração & dosagem , Animais , Estudos de Coortes , Suplementos Nutricionais/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
3.
Sci Rep ; 8(1): 14550, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266917

RESUMO

Left ventricular myocardial fibrosis in patients with aortic stenosis (AS) confers worse prognosis. Plasma osteoprotegerin (OPG), a cytokine from the TNF receptor family, correlates with the degree of valve calcification in AS, reflecting the activity of the tissue RANKL/RANK/OPG (receptor activator of nuclear factor κΒ ligand/RANK/osteoprotegerin) axis, and is associated with poorer outcomes in AS. Its association with myocardial fibrosis is unknown. We hypothesised that OPG levels would reflect the extent of myocardial fibrosis in AS. We included 110 consecutive patients with AS who had undergone late-gadolinium contrast enhanced cardiovascular magnetic resonance (LGE-CMR). Patients were characterised according to pattern of fibrosis (no fibrosis, midwall fibrosis, or chronic myocardial infarction fibrosis). Serum OPG was measured with ELISA and compared between groups defined by valve stenosis severity. Some 36 patients had no fibrosis, 38 had midwall fibrosis, and 36 had chronic infarction. Patients with midwall fibrosis did not have higher levels of OPG compared to those without fibrosis (6.78 vs. 5.25 pmol/L, p = 0.12). There was no difference between those with midwall or chronic myocardial infarction fibrosis (6.78 vs. 6.97 pmol/L, p = 0.27). However, OPG levels in patients with chronic myocardial infarction fibrosis were significantly higher than those without fibrosis (p = 0.005).


Assuntos
Estenose da Valva Aórtica/sangue , Infarto do Miocárdio/sangue , Miocárdio/patologia , Osteoprotegerina/sangue , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/patologia , Feminino , Fibrose , Ventrículos do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia
4.
Br J Pharmacol ; 173(12): 1911-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26993743

RESUMO

Many conditions culminate in heart failure (HF), a multi-organ systemic syndrome with an intrinsically poor prognosis. Pharmacotherapeutic agents that correct neurohormonal dysregulation and haemodynamic instability have occupied the forefront of developments within the treatment of HF in the past. Indeed, multiple trials aimed to validate these agents in the 1980s and early 1990s, resulting in a large and robust evidence-base supporting their use clinically. An established treatment paradigm now exists for the treatment of HF with reduced ejection fraction (HFrEF), but there have been very few notable developments in recent years. HF remains a significant health concern with an increasing incidence as the population ages. We may indeed be entering the surgical era for HF treatment, but these therapies remain expensive and inaccessible to many. Newer pharmacotherapeutic agents are slowly emerging, many targeting alternative therapeutic pathways, but with mixed results. Metabolic modulation and manipulation of the nitrate/nitrite/nitric oxide pathway have shown promise and could provide the answers to fill the therapeutic gap between medical interventions and surgery, but further definitive trials are warranted. We review the significant evidence base behind the current medical treatments for HFrEF, the physiology of metabolic impairment in HF, and discuss two promising novel agents, perhexiline and nitrite.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Nitritos/uso terapêutico , Perexilina/uso terapêutico , Insuficiência Cardíaca/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA