Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(1-2): 68-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503264

RESUMO

A prototype strain of Coxsackievirus A21 (CVA21) is being evaluated as an oncolytic virus immunotherapy. CVA21 preferentially lyses cells that upregulate the expression of intercellular adhesion molecule 1, which includes some types of tumor cells. CVA21 has an icosahedral capsid structure made up of 60 protein subunits encapsidating a viral RNA genome with a particle diameter size of 30 nm. Rapid and robust analytical methods to quantify CVA21 total, empty, and full virus particles are important to support the process development, meet regulatory requirements, and validate manufacturing processes. In this study, we demonstrate the detection of all four CVA21 capsid proteins, VP1, VP2, VP3, and VP4, as well as VP0, a surrogate for empty particles, using in-house-generated antibodies. An automated and quantitative capillary Western blot assay, Simple Western, was developed using these antibodies to quantify CVA21 total particles through VP1, empty particles through VP0, relative ratio of empty to full particles through VP0 and VP4, and the absolute ratio of empty to total particles through VP0 and VP1. Finally, this Simple Western method was used to support CVA21 cell culture and purification process optimization as a high-throughput analytical tool to make rapid process decisions.


Assuntos
Capsídeo , Vírus Oncolíticos , Capsídeo/metabolismo , Vírus Oncolíticos/metabolismo , Proteínas Virais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo
2.
Hum Gene Ther ; 33(13-14): 765-775, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35387488

RESUMO

Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious. In addition to mature virions, empty procapsids with VPs, VP0, VP1, and VP3, and other virus particles are produced in V937 production cell culture. Viral protein VP0 is cleaved into VP2 and VP4 after RNA genome encapsidation to form mature virions. Clearance of viral particles containing VP0, and quantification of viral protein distribution are important in V937 downstream processing. Existing analytical methods for the characterization of viral proteins and particles may lack sensitivity or are low throughput. We developed a sensitive and robust reverse-phase ultra-performance chromatography method to separate, identify, and quantify all five CVA21 VPs. Quantification of virus capsid concentration and empty/full capsid ratio was achieved with good linearity, accuracy, and precision. ClinicalTrials.gov ID: NCT04521621 and NCT04152863.


Assuntos
Capsídeo , Vírus Oncolíticos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cromatografia , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , RNA Viral/análise , RNA Viral/metabolismo , Proteínas Virais
3.
Mol Ther Oncolytics ; 24: 139-147, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024440

RESUMO

V937 is an oncolytic virus immunotherapy clinical drug candidate consisting of a proprietary formulation of Coxsackievirus A21 (CVA21). V937 specifically binds to and lyses cells with over-expressed ICAM-1 receptors in a range of tumor cell types and is currently in phase I and II clinical trials. Infectious V937 particles consist of a ∼30 nm icosahedral capsid assembled from four structural viral proteins that encapsidate a viral RNA genome. Rapid and robust analytical methods to quantify and characterize CVA21 virus particles are important to support the process development, regulatory requirements, and validation of new manufacturing platforms. Herein, we describe a size-exclusion chromatography (SEC) method that was developed to characterize the V937 drug substance and process intermediates. Using a 4-in-1 combination of multi-detectors (UV, refractive index, dynamic and static light scattering), we demonstrate the use of SEC for the quantification of the virus particle count, the determination of virus size (molecular weight and hydrodynamic diameter), and the characterization of virus purity by assessing empty-to-full capsid ratios. Through a SEC analysis of stressed V937 samples, we propose CVA21 thermal degradation pathways that result in genome release and particle aggregation.

4.
Vaccine ; 39(33): 4705-4715, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34229890

RESUMO

Human cytomegalovirus (HCMV) is currently a major cause of congenital disease in newborns and organ failure in transplant recipients. Despite decades of efforts, an effective vaccine against HCMV has yet to be developed. However, the discovery of pentameric gH complex on viral surface which contains potent neutralizing epitopes may help enable development of an effective vaccine. In our company ongoing Phase II clinical trial of whole-live virus HCMV vaccine (V160), the pentameric gH complex has been restored on the surface of live attenuated AD169 virus strain. The reconstructed HCMV virus contains a variety of surface glycoproteins including pentameric gH/gL/gUL128-131 complex, trimeric gH/gL/gO complex, gB glycoprotein, and gM/gN heterodimer complex. To further characterize this virus and enable the monitoring of multiple viral antigens during vaccine process development an effective and efficient analytical strategy was required to detect and quantify several viral surface proteins. In this paper, we present an innovative approach based on capillary western blot technology that allows fast and accurate quantitation of pentameric gH/gL/gUL128-131 complex, trimeric gH/gL/gO complex, and gB glycoprotein. This method is suitable for analyzing target proteins in multiple sample types including supernatants from infected cell culture, purification intermediates, concentration bulk, and the final vaccine product. In addition, the capillary western blot-based technology identified a previously unknown biochemical profile present in some HCMV viruses: triplet gH peaks of viral surface proteins in non-reducing environment, which could potentially present a new strategy for specificity and identity testing.


Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Anticorpos Neutralizantes , Western Blotting , Glicoproteínas , Humanos , Recém-Nascido
5.
J Chromatogr A ; 1651: 462274, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34090060

RESUMO

This review article describes the significant recent advances in Isoelectric Focusing from the period 2015-2020. The review highlights the principles and common challenges faced in Isoelectric Focusing as well as its applications. This review also details the recent advances in various modes of Isoelectric Focusing in various platforms and future directions for the technique.


Assuntos
Focalização Isoelétrica/métodos , Peptídeos/análise , Proteínas/análise , Animais , Humanos
6.
Vaccine ; 38(45): 7166-7174, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32951937

RESUMO

Ebolavirus (EBOV) entry to host cells requires membrane-associated glycoprotein (GP). A recombinant vesicular stomatitis virus vector carrying Zaire Ebola virus glycoprotein (rVSV-ZEBOV) was developed as a vaccine against ebolaviruses. The VSV glycoprotein gene was deleted (rVSVΔG) and ZEBOV glycoprotein (GP) was inserted into the deleted VSV glycoprotein open reading frame (ORF) resulting in a live, replication-competent vector (rVSVΔG-ZEBOV-GP). Automated capillary westerns were used to characterize the rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) manufacturing process with regards to glycoprotein (GP) structure and variants. The method shows a unique electropherogram profile for each process step which could be used to monitor process robustness. rVSVΔG-ZEBOV-GP encodes GP (GP1-GP2), secreted GP (sGP), and small secreted GP (ssGP) variants. Furthermore, a TACE-like activity was observed indirectly by detecting soluble GP2Δ after virus precipitation by ultracentrifugation. Capillary western blotting techniques can guide process development by evaluating process steps such as enzyme treatment. In addition, the technique can assess GP stability and process lot-to-lot consistency. Finally, capillary western-based technology was used to identify a unique biochemical profile of the rVSVΔG-ZEBOV-GP vaccine strain in final product. Virion membrane-bound GP1-GP2 is critical to vaccine-elicited protection by providing both neutralizing antibodies and T-cell response.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Antivirais , Western Blotting , Ebolavirus/genética , Glicoproteínas/genética , Humanos , Proteínas do Envelope Viral/genética
7.
PLoS Pathog ; 15(7): e1007914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356650

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause disability in newborns and serious clinical diseases in immunocompromised patients. HCMV has a large genome with enormous coding potential; its viral particles are equipped with complicated glycoprotein complexes and can infect a wide range of human cells. Although multiple host cellular receptors interacting with viral glycoproteins have been reported, the mechanism of HCMV infection remains a mystery. Here we report identification of adipocyte plasma membrane-associated protein (APMAP) as a novel modulator active in the early stage of HCMV infection. APMAP is necessary for HCMV infection in both epithelial cells and fibroblasts; knockdown of APMAP expression significantly reduced HCMV infection of these cells. Interestingly, ectopic expression of human APMAP in cells refractory to HCMV infection, such as canine MDCK and murine NIH/3T3 cells, promoted HCMV infection. Furthermore, reduction in viral immediate early (IE) gene transcription at 6 h post infection and delayed nucleus translocation of tegument delivered pp65 at 4 h post infection were detected in APMAP-deficient cells but not in the wildtype cells. These results suggest that APMAP plays a role in the early stage of HCMV infection. Results from biochemical studies of APMAP and HCMV proteins suggest that APMAP could participate in HCMV infection through interaction with gH/gL containing glycoprotein complexes at low pH and mediate nucleus translocation of tegument pp65. Taken together, our results suggest that APMAP functions as a modulator promoting HCMV infection in multiple cell types and is an important player in the complex HCMV infection mechanism.


Assuntos
Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/patogenicidade , Glicoproteínas de Membrana/metabolismo , Adipócitos/metabolismo , Adipócitos/virologia , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/etiologia , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Técnicas de Inativação de Genes , Interações entre Hospedeiro e Microrganismos , Humanos , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Células NIH 3T3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Estruturais Virais/metabolismo , Virulência , Internalização do Vírus
8.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077654

RESUMO

Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Linhagem Celular , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Mapeamento de Epitopos , Humanos , Macaca mulatta , Ligação Proteica , Coelhos , Vacinação , Vacinas Virais/administração & dosagem , Internalização do Vírus
9.
J Biol Chem ; 290(26): 15985-95, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947373

RESUMO

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Células Epiteliais/virologia , Epitopos/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cricetinae , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Células Epiteliais/imunologia , Epitopos/genética , Humanos , Glicoproteínas de Membrana/genética , Ligação Proteica , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA