Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Metab ; 83: 101930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570069

RESUMO

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Assuntos
Acidose , Adipócitos , Tecido Adiposo , Caquexia , Lipólise , Animais , Camundongos , Acidose/metabolismo , Adipócitos/metabolismo , Humanos , Tecido Adiposo/metabolismo , Caquexia/metabolismo , Masculino , Microambiente Tumoral , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Feminino , Glucuronidase/metabolismo , Concentração de Íons de Hidrogênio
2.
Liver Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623714

RESUMO

Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38572511

RESUMO

BACKGROUND: Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy. METHODS: The effect of AR on cancer cachexia was investigated in two distinct murine models of colorectal cancer. First, 7-week-old CD2F1 male mice were subcutaneously injected with colon-26 carcinoma cells (C26) or vehicle (CT). Six days after injection, mice were treated for 5 days with AdipoRon (50 mg/kg/day; C26 + AR) or the corresponding vehicle (CT and C26). Additionally, a genetic model, the ApcMin/+ mouse, that develops spontaneously numerous intestinal polyps, was used. Eight-week-old male ApcMin/+ mice were treated with AdipoRon (50 mg/kg/day; Apc + AR) or the corresponding vehicle (Apc) over a period of 12 weeks, with C57BL/6J wild-type mice used as controls. In both models, several parameters were assessed in vivo: body weight, grip strength and serum parameters, as well as ex vivo: molecular changes in muscle, fat and liver. RESULTS: The protective effect of AR on cachexia development was observed in both cachectic C26 and ApcMin/+ mice. In these mice, AR administration led to a significant alleviation of body weight loss and muscle wasting, together with rescued muscle strength (P < 0.05 for all). In both models, AR had a strong anti-inflammatory effect, reflected by lower systemic interleukin-6 levels (-55% vs. C26, P < 0.001 and -80% vs. Apc mice, P < 0.05), reduced muscular inflammation as indicated by lower levels of Socs3, phospho-STAT3 and Serpina3n, an acute phase reactant (P < 0.05 for all). In addition, AR blunted circulating levels of corticosterone (-46% vs. C26 mice, P < 0.001 and -60% vs. Apc mice, P < 0.05), the predominant murine glucocorticoid known to induce muscle atrophy. Accordingly, key glucocorticoid-responsive factors implicated in atrophy programmes were-or tended to be-significantly blunted in skeletal muscle by AR. Finally, AR protected against lipid metabolism alterations observed in ApcMin/+ mice, as it mitigated the increase in circulating triglyceride levels (-38%, P < 0.05) by attenuating hepatic triglyceride synthesis and fatty acid uptake by the liver. CONCLUSIONS: Altogether, these results show that AdipoRon rescued the cachectic phenotype by alleviating body weight loss and muscle atrophy, along with restraining inflammation and hypercorticism in preclinical murine models. Therefore, AdipoRon could represent an innovative therapeutic strategy to counteract cancer cachexia.

4.
Eur J Endocrinol ; 189(3): 409-421, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638789

RESUMO

IMPORTANCE AND OBJECTIVE: The identification of myokines susceptible to improve glucose homeostasis following bariatric surgery could lead to new therapeutic approaches for type 2 diabetes. METHODS: Changes in the homeostasis model assessment (HOMA) test were assessed in patients before and 3 months after bariatric surgery. Changes in myokines expression and circulating levels were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Myokines known to regulate glucose homeostasis were identified using literature (targeted study) and putative myokines using RNA-sequencing (untargeted study). A linear regression analysis adjusted for age and sex was used to search for associations between changes in the HOMA test and changes in myokines. RESULTS: In the targeted study, brain-derived neurotrophic factor (BDNF) expression was upregulated (+30%, P = .006) while BDNF circulating levels were decreased (-12%, P = .001). Upregulated BDNF expression was associated with decreased HOMA of insulin resistance (HOMA-IR) (adjusted estimate [95% confidence interval {CI}]: -0.51 [-0.88 to -0.13], P = .010). Decreased BDNF serum levels were associated with decreased HOMA of beta-cell function (HOMA-B) (adjusted estimate [95% CI] = 0.002 [0.00002-0.0031], P = .046). In the untargeted study, upregulated putative myokines included XYLT1 (+64%, P < .001), LGR5 (+57, P< .001), and SPINK5 (+46%, P < .001). Upregulated LGR5 was associated with decreased HOMA-IR (adjusted estimate [95% CI] = -0.50 [-0.86 to -0.13], P = .009). Upregulated XYLT1 and SPINK5 were associated with increased HOMA of insulin sensitivity (HOMA-S) (respectively, adjusted estimate [95% CI] = 109.1 [28.5-189.8], P = .009 and 16.5 [0.87-32.19], P = .039). CONCLUSIONS: Improved glucose homeostasis following bariatric surgery is associated with changes in myokines expression and circulating levels. In particular, upregulation of BDNF, XYLT1, SPINK5, and LGR5 is associated with improved insulin sensitivity. These results suggest that these myokines could contribute to improved glucose homeostasis following bariatric surgery. STUDY REGISTRATION: NCT03341793 on ClinicalTrials.gov (https://clinicaltrials.gov/).


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Fator Neurotrófico Derivado do Encéfalo , Diabetes Mellitus Tipo 2/cirurgia , Glucose
5.
Nature ; 617(7962): 827-834, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165186

RESUMO

Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.


Assuntos
Caquexia , Atrofia Muscular , Neoplasias , Transdução de Sinais , Receptor Xedar , Animais , Camundongos , Caquexia/complicações , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/patologia , Receptor Xedar/metabolismo , Humanos , Ligantes , Receptores de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Quinase Induzida por NF-kappaB
6.
Obes Surg ; 33(5): 1373-1381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36892751

RESUMO

INTRODUCTION: Weight loss failure or weight regain after primary Roux-en-Y gastric bypass (RYGB) is a challenge for bariatric surgeons. Failure to achieve a body mass index (BMI) <35 kg/m2 after RYGB occurs in up to 40.0%. The aim of this study was to evaluate long-term results of a novel technique for distalization of Roux-en-Y gastric bypass (DRYGB) as a revisional procedure. METHODS: Retrospective data were reviewed for 22 patients who had undergone RYGB and failed to achieve an excess weight loss (EWL) >50% or BMI <35 kg/m2 and underwent limb distalization between 2013 and 2022. For this DRYGB procedure, the length of the common channel was 100 cm, and the lengths of the biliopancreatic limb and the alimentary limb were 1/3 and 2/3 of the remaining bowel, respectively. RESULTS: The mean BMI values before and after DRYGB were 43.7 kg/m2 and 33.5 kg/m2, respectively. Five years after DRYGB, mean % EWL was 74.3% and mean % total weight loss (TWL) was 28.8%. Mean % EWL and mean % TWL of the two procedures (RYGB and DRYGB) after 5 years were 80.9% and 44.7%, respectively. Three patients experienced protein calorie malnutrition. One was reproximalized and the others were treated with parenteral nutrition with no recurrence. There was a significant decrease in the incidence of diabetes type 2 and dyslipidemia after DRYGB. CONCLUSION: The DRYGB procedure results in substantial and sustained long-term weight loss. Due to the risk of malnutrition, patients must be strictly followed for life after the procedure.


Assuntos
Derivação Gástrica , Laparoscopia , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Reoperação/métodos , Redução de Peso , Índice de Massa Corporal , Laparoscopia/métodos
7.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406681

RESUMO

Activin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-ß/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-ß/slow. This decrease in MEF2C was involved in the decline of MyHC-ß/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-ß/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-ß/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.


Assuntos
Ativinas , Fatores de Transcrição MEF2 , Atrofia Muscular , Doenças Musculares , Animais , Caquexia/metabolismo , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Desenvolvimento Muscular/genética
8.
J Cachexia Sarcopenia Muscle ; 12(1): 70-90, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350058

RESUMO

BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 µM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.


Assuntos
Caquexia , Colestase , Inflamação , Neoplasias , Animais , Caquexia/etiologia , Colestase/etiologia , Citocinas , Humanos , Inflamação/complicações , Camundongos , Neoplasias/complicações
9.
Cancers (Basel) ; 12(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142864

RESUMO

Loss of skeletal muscle mass in cancer cachexia is recognized as a predictor of mortality. This study aimed to characterize the changes in the muscle secretome associated with cancer cachexia to gain a better understanding of the mechanisms involved and to identify secreted proteins which may reflect this wasting process. The changes in the muscle proteome of the C26 model were investigated by label-free proteomic analysis followed by a bioinformatic analysis in order to identify potentially secreted proteins. Multiple reaction monitoring and Western blotting were used to verify the presence of candidate proteins in the circulation. Our results revealed a marked increased muscular production of several acute phase reactants (APR: Haptoglobin, Serine protease inhibitor A3N, Complement C3, Serum amyloid A-1 protein) which are released in the circulation during C26 cancer cachexia. This was confirmed in other models of cancer cachexia as well as in cancer patients. Glucocorticoids and proinflammatory cytokines are responsible for an increased production of APR by muscle cells. Finally, their muscular expressions are strongly positively correlated with body weight loss as well as the muscular induction of atrogens. Our study demonstrates therefore a marked increased production of APR by the muscle in cancer cachexia.

10.
Dev Cell ; 45(6): 712-725.e6, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920276

RESUMO

Cancer cachexia is characterized by extreme skeletal muscle loss that results in high morbidity and mortality. The incidence of cachexia varies among tumor types, being lowest in sarcomas, whereas 90% of pancreatic ductal adenocarcinoma (PDAC) patients experience severe weight loss. How these tumors trigger muscle depletion is still unfolding. Serendipitously, we found that overexpression of Twist1 in mouse muscle progenitor cells, either constitutively during development or inducibly in adult animals, caused severe muscle atrophy with features reminiscent of cachexia. Using several genetic mouse models of PDAC, we detected a marked increase in Twist1 expression in muscle undergoing cachexia. In cancer patients, elevated levels of Twist1 are associated with greater degrees of muscle wasting. Finally, both genetic and pharmacological inactivation of Twist1 in muscle progenitor cells afforded substantial protection against cancer-mediated cachexia, which translated into meaningful survival benefits, implicating Twist1 as a possible target for attenuating muscle cachexia in cancer patients.


Assuntos
Caquexia/metabolismo , Células Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Caquexia/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Mioblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia
11.
Oncotarget ; 9(26): 18224-18238, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719601

RESUMO

Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

12.
J Cachexia Sarcopenia Muscle ; 8(5): 768-777, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28712119

RESUMO

BACKGROUND: Several experimental evidences pinpoint the possible role of Activin A (ActA) as a driver of cancer cachexia. Supporting this hypothesis, we showed recently that human cancer cachexia is associated with high ActA levels. Moreover, ActA levels were correlated with body weight loss and skeletal muscle density, two prognostic factors in cancer patients. Our goal was therefore to investigate the value of ActA to predict survival in cancer patients. METHODS: Patients with colorectal or lung cancer were prospectively enrolled at the time of diagnosis or relapse between January 2012 and March 2014. At baseline, patients had clinical, nutritional, and functional assessment. Body composition and skeletal muscle density were measured by CT scan, and plasma ActA concentrations were determined. Overall survival (OS) was analysed since inclusion to 24 months later. RESULTS: Survival data were available for 149 patients out of 152. Patients with high ActA (≥408 pg/mL) had lower OS than those with low levels, regardless the type of cancer (OS in colorectal cancer, 50% vs. 79%, P < 0.05; and in lung cancer, 27% vs. 67%, P = 0.001). The multivariable analysis confirmed the prognostic value of ActA independently of tumour stage or inflammatory markers, particularly in lung cancer. Low muscularity was also an independent prognostic factor. CONCLUSIONS: Our study demonstrates that high ActA level is an independent prognosis factor of survival in cancer patients. More than a basic marker of the severity of the neoplastic disease or of the inflammatory process, ActA seems to influence survival by contributing to the development of cachexia and loss of skeletal muscle mass.


Assuntos
Ativinas/sangue , Biomarcadores Tumorais , Neoplasias/sangue , Neoplasias/mortalidade , Tecido Adiposo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Caquexia/sangue , Caquexia/etiologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Estadiamento de Neoplasias , Neoplasias/complicações , Estado Nutricional , Tamanho do Órgão , Prognóstico , Adulto Jovem
13.
Clin Biochem ; 50(18): 1281-1288, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28739222

RESUMO

Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.


Assuntos
Biomarcadores Tumorais , Caquexia , Neoplasias , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caquexia/diagnóstico , Caquexia/genética , Caquexia/metabolismo , Marcadores Genéticos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo
14.
Am J Physiol Endocrinol Metab ; 309(6): E557-67, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26219865

RESUMO

Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth.


Assuntos
Folistatina/genética , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Miostatina/genética , Receptor IGF Tipo 1/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Folistatina/efeitos dos fármacos , Folistatina/metabolismo , Hipertrofia/metabolismo , Hipofisectomia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miostatina/efeitos dos fármacos , Miostatina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
J Clin Endocrinol Metab ; 100(5): 2030-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751105

RESUMO

CONTEXT: Cachexia is a multifactorial syndrome, characterized by the loss of skeletal muscle mass and not fully reversible by nutritional support. Recent animal observations suggest that production of Activin A (ActA) and Myostatin (Mstn) by some tumors might contribute to cancer cachexia. OBJECTIVE: Our goal was to investigate the role of ActA and Mstn in the development of the human cancer cachexia. DESIGN/SETTING: The ACTICA study is a cross-sectional study, which prospectively enrolled patients from a tertiary-care center between January 2012 and March 2014. Subjects/Outcome Measures: One hundred fifty two patients with colorectal or lung cancer had clinical, nutritional and functional assessment. Body composition was measured by CT-scan, anthropometry, and bioimpedance. Plasma concentrations of ActA, Mstn, and Follistatin were determined. RESULTS: Cachexia was associated with reduced lean and fat mass (p < .01 and p < .001), reduced physical function, lower quality of life, and increased symptoms (QLQC30; p < .001). Anorexia (SNAQ score < 14) was more common in cachectic patients (CC) than in noncachectic patients (CNC) (p < .001). ActA concentrations in CC patients were higher than in CNC patients (+40%; p < .001) and were correlated positively with weight loss (R = 0.323; p < .001) and negatively with the SNAQ score (R = -0.225; p < .01). In contrast, Mstn concentrations were decreased in CC patients compared to CNC patients (-35%; p < .001). CONCLUSIONS: These results demonstrate an association between circulating concentrations of ActA and the presence of the anorexia/cachexia syndrome in cancer patients. Given the known muscle atrophic effects of ActA, our study suggests that increased circulating concentrations of ActA may contribute to the development of cachexia in cancer patients.


Assuntos
Ativinas/sangue , Caquexia/etiologia , Neoplasias Colorretais/sangue , Neoplasias Pulmonares/sangue , Miostatina/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Caquexia/sangue , Neoplasias Colorretais/complicações , Estudos Transversais , Feminino , Humanos , Neoplasias Pulmonares/complicações , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Qualidade de Vida
16.
Ann Endocrinol (Paris) ; 74(2): 79-81, 2013 May.
Artigo em Francês | MEDLINE | ID: mdl-23566617

RESUMO

Recent works suggest that Activin A (ActA) and Myostatin (Mstn), two members of the TGFß superfamily, could contribute to skeletal muscle atrophy observed in some cancers. It is known that several human tumoral cell lines synthesize and secrete ActA and Mstn. In addition, systemic treatment with ActA and Mstn in mice induce muscle atrophy. Likewise, Inhibin-α knock-out mice, which are characterized by elevated circulating levels of ActA, exhibit muscle atrophy and die of cachexia. Finally, administration of ActA and Mstn antagonists prevents muscular atrophy and mortality induced by some animal tumors. Collectively, these findings suggest that ActA or Mstn production by several cancers could contribute to cachexia and thus to mortality associated with some cancers in human. This hypothesis is very interesting since new molecules that are able to inhibit ActA and Mstn, in particularly the sActRIIB, are under development.


Assuntos
Ativinas/fisiologia , Caquexia/etiologia , Miostatina/fisiologia , Neoplasias/complicações , Ativinas/antagonistas & inibidores , Ativinas/genética , Ativinas/farmacologia , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/prevenção & controle , Humanos , Camundongos , Camundongos Knockout , Miostatina/antagonistas & inibidores , Miostatina/metabolismo , Miostatina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA