Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(41): 22345-22351, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34409717

RESUMO

A reductive cyclization to prepare a variety of N-heterocycles, through the use of ortho-vinylanilides, is reported. The reaction is catalyzed by an inexpensive and bench-stable iron complex and generally occurs at ambient temperature. The transformation likely proceeds through hydromagnesiation of the vinyl group, and trapping of the in situ generated benzylic anion by an intramolecular electrophile to form the heterocycle. This iron-catalyzed strategy was shown to be broadly applicable and was utilized in the synthesis of substituted indoles, oxindoles and tetrahydrobenzoazepinoindolone derivatives. Mechanistic studies indicated that the reversibility of the hydride transfer step depends on the reactivity of the tethered electrophile. The synthetic utility of our approach was further demonstrated by the formal synthesis of a reported bioactive compound and a family of natural products.

2.
Dalton Trans ; 48(16): 5135-5139, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30916099

RESUMO

A combination of electrospray-ionization mass spectrometry and Mössbauer spectroscopy was used to investigate the species generated in situ in highly enantioselective Fe/NHC-catalyzed C-H alkylations. The findings indicate an organometallic iron(ii)-NHC species to be of key relevance in the asymmetric catalysis.

3.
Angew Chem Int Ed Engl ; 58(6): 1749-1753, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517772

RESUMO

Highly enantioselective nickel-catalyzed alkene endo-hydroarylations were accomplished with full selectivity by organometallic C-H activation. The asymmetric assembly of chiral six-membered scaffolds proved viable in the absence of pyrophoric organoaluminum reagents within an unprecedented nickel/JoSPOphos manifold.

4.
Bioorg Med Chem Lett ; 28(5): 906-909, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433930
5.
Angew Chem Int Ed Engl ; 56(45): 14197-14201, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28922549

RESUMO

Highly enantioselective iron-catalyzed C-H alkylations by inner-sphere C-H activation were accomplished with ample scope. High levels of enantiocontrol proved viable through a novel ligand design that exploits a remote meta-substitution on N-heterocyclic carbenes within a facile ligand-to-ligand H-transfer C-H cleavage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA