Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487996

RESUMO

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

2.
Antiviral Res ; 216: 105658, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356729

RESUMO

Remdesivir is a nucleotide prodrug with preclinical efficacy against lethal Nipah virus infection in African green monkeys when administered 1 day post inoculation (dpi) (Lo et al., 2019). Here, we determined whether remdesivir treatment was still effective when treatment administration initiation was delayed until 3 dpi. Three groups of six African green monkeys were inoculated with a lethal dose of Nipah virus, genotype Bangladesh. On 3 dpi, one group received a loading dose of 10 mg/kg remdesivir followed by daily dosing with 5 mg/kg for 11 days, one group received 10 mg/kg on 12 consecutive days, and the remaining group received an equivalent volume of vehicle solution. Remdesivir treatment initiation on 3 dpi provided partial protection from severe Nipah virus disease that was dose dependent, with 67% of animals in the high dose group surviving the challenge. However, remdesivir treatment did not prevent clinical disease, and surviving animals showed histologic lesions in the brain. Thus, early administration seems critical for effective remdesivir treatment during Nipah virus infection.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Chlorocebus aethiops , Infecções por Henipavirus/tratamento farmacológico , Infecções por Henipavirus/prevenção & controle , Encéfalo , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico
3.
Antiviral Res ; 198: 105246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032523

RESUMO

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Doenças Pulmonares Intersticiais/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/uso terapêutico , Administração Cutânea , Alanina/administração & dosagem , Alanina/farmacocinética , Alanina/uso terapêutico , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34315826

RESUMO

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Cricetinae , Macaca mulatta , Vacinação , Eliminação de Partículas Virais
5.
Cell Rep Med ; 2(4): 100230, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33754147

RESUMO

The deployment of a vaccine that limits transmission and disease likely will be required to end the coronavirus disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S [chimpanzee adenovirus-severe acute respiratory syndrome-coronavirus-2-S]) in the upper and lower respiratory tracts of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged 1 month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induces neutralizing antibodies and T cell responses and limits or prevents infection in the upper and lower respiratory tracts after SARS-CoV-2 challenge. As ChAd-SARS-CoV-2-S confers protection in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.

6.
bioRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532770

RESUMO

The deployment of a vaccine that limits transmission and disease likely will be required to end the Coronavirus Disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally-administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S) in the upper and lower respiratory tract of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged one month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induced neutralizing antibodies and T cell responses and limited or prevented infection in the upper and lower respiratory tract after SARS-CoV-2 challenge. As this single intranasal dose vaccine confers protection against SARS-CoV-2 in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.

7.
Sci Transl Med ; 13(578)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33431511

RESUMO

Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Análise de Sequência de RNA , Análise de Célula Única , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/genética , Chlorocebus aethiops , DNA Viral/genética , Feminino , Genoma Viral/genética , Inflamação/patologia , Pulmão/patologia , Linfonodos/patologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Mediastino/patologia , Transcrição Gênica , Carga Viral , Replicação Viral
8.
Int J Radiat Biol ; 97(sup1): S88-S99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32909856

RESUMO

PURPOSE: Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are necessary in order to assess the efficacy of candidate medical countermeasures under the criteria of the U.S. Food and Drug Administration 'Animal Rule'. Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity under scenarios likely to be present in the human population during mass casualty situations. These scenarios include understanding the impact of medical management on survival of the hematopoietic acute radiation syndrome (H-ARS). Little information is available to compare the impact of medical management under identical study conditions. The work presented here provides a comparison of the impact of different levels of medical management (supportive care) on the survival outcome in two large animal models: the male Gottingen minipig and the male rhesus macaque (NHP). MATERIALS AND METHODS: In the context of this comparison, limited supportive care consisted of administration of analgesics only, standard supportive care consisted of prophylactic administration of analgesics, antibiotics and fluids (minipigs) or analgesics, antibiotics, antidiarrheals, nutritional and fluid support (NHP) on a set schedule regardless of indication, and full supportive care (NHP only) consisted of analgesics, antibiotics, antidiarrheals, nutritional and fluid support, antiemetics and blood transfusions on an individual animal, trigger-to-treat regimen. Regardless of level of supportive care, minipigs were exposed to total body irradiation using a Co60 source and NHPs were exposed to total body irradiation using 6 MV photon energy. RESULTS: Based on estimated LD50 values, the inclusion of antimicrobial or broad-spectrum antibiotics provided a dose modifying factor (DMF) of 1.09 in the minipig, and by 1.15 in the NHP (standard supportive care to limited supportive care ratio. For the NHP, the administration of supportive care based on symptomology rather than a set schedule, and inclusion of blood transfusions yielded a DMF of 1.05 (full supportive care to standard supportive care ratio). Conversely, comparison of the estimated LD50 values between full supportive care and limited supportive care in the NHP provided a DMF of 1.21. CONCLUSION: The study reported here provides a comparison of the impact of antibiotic administration on radiation-induced lethality.


Assuntos
Síndrome Aguda da Radiação , Irradiação Corporal Total , Síndrome Aguda da Radiação/terapia , Animais , Antibacterianos , Antidiarreicos , Modelos Animais de Doenças , Macaca mulatta , Masculino , Modelos Animais , Suínos , Porco Miniatura , Irradiação Corporal Total/efeitos adversos
9.
Nature ; 586(7830): 578-582, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32731258

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Macaca mulatta , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Adenoviridae/genética , Animais , Líquido da Lavagem Broncoalveolar , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Citocinas/imunologia , Feminino , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Vacinação , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
10.
Nature ; 585(7824): 273-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516797

RESUMO

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
11.
bioRxiv ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32511340

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.

12.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848292

RESUMO

Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance-a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types.IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


Assuntos
Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Animais , Biópsia , Imunização , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Primatas , Radiografia , Infecções Respiratórias/diagnóstico , Transcriptoma , Vacinação
13.
Comp Med ; 64(2): 115-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24674586

RESUMO

Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with polycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.


Assuntos
Cistos/veterinária , Infertilidade Masculina/veterinária , Hepatopatias/veterinária , Camundongos Transgênicos , Doenças dos Roedores/patologia , Animais , Cistos/complicações , Cistos/patologia , Primers do DNA/genética , Feminino , Infertilidade Masculina/etiologia , Queratina-14/genética , Laparotomia/veterinária , Hepatopatias/complicações , Hepatopatias/patologia , Masculino , Camundongos , Reação em Cadeia da Polimerase/veterinária , Doenças dos Roedores/genética , Testículo/patologia
14.
Int J Radiat Biol ; 90(1): 60-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24279338

RESUMO

PURPOSE: Plutonium-nitrate has a moderately rapid translocation rate from the lung to blood stream. Previous studies have shown an unexpected retention of soluble plutonium in the beagles and human case studied here. The inflammatory responses that may be associated with long-term exposure to ionizing radiation were characterized. These pathways include tissue injury, apoptosis, and gene expression modifications. Other protein modifications related to carcinogenesis and inflammation and the various factors that may play a role in orchestrating complex interactions which influence tissue integrity following irradiation were investigated. MATERIALS AND METHODS: We have examined numerous lung samples from a plutonium-exposed worker, a human control, and a variety of plutonium-exposed beagle dogs using immunohistochemistry and quantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). RESULTS: The exposed human showed interstitial fibrosis in peripheral regions of the lung, but no pulmonary tumors. Beagles with similar doses were diagnosed with tumors in bronchiolo-alveolar, peripheral and sub-pleural alveolar regions of the lung. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed an elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris in the alveoli and lymph nodes of the beagles but not in the human case. In both the beagles and human there were statistically significant modifications in the expression of Fas ligand (FASLG), B-cell lymphoma 2 (BCL2), and Caspase 3 (CASP3). CONCLUSIONS: The data suggests that FASLG, BCL2, CASP3 and apoptosis play a role in the inflammatory responses following prolonged plutonium exposure. Utilizing these unique tissues revealed which pathways are triggered following the internal deposition and long-term retention of plutonium-nitrate in a human and a large animal model.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/metabolismo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Nitratos/intoxicação , Exposição Ocupacional/efeitos adversos , Plutônio/intoxicação , Idoso , Animais , Cães , Humanos , Masculino , Centrais Nucleares , Doenças Profissionais/etiologia , Doenças Profissionais/metabolismo , Exposição Ocupacional/análise
15.
Health Phys ; 105(3): 245-252, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30522248

RESUMO

There is a great deal of interest in the establishment of a standardized animal model for the acute radiation syndrome to allow development of diagnostic approaches and countermeasure treatments following radiological terrorist events. Due to physiological, anatomical, and biochemical similarities to humans, the minipig is an attractive large animal model for evaluating countermeasure efficacy. This study was conducted in order to aid in the establishment of the minipig, and the Göttingen minipig in particular, as an animal model for the hematopoietic acute radiation syndrome. Animals were exposed whole-body to Co at doses of 0 (sham control), 0.25, 0.5, 0.75, 1.0, and 2.0 Gy, and hematological parameters followed in time from pre-irradiation to post-irradiation Day 7. Following irradiation, a dose-dependent decrease in total white blood cells was observed, which was determined to be statistically different as compared to control animals at all dose levels above 0.25 Gy at 24 h post-irradiation. Similarly, a dose-dependent reduction in both absolute lymphocyte count and absolute neutrophil count occurred by the earliest time point measured for all exposed animals. A significant decrease in platelets was observed at post-irradiation Day 7 in animals exposed only at the highest (2.0 Gy) level. The platelet-to-lymphocyte ratio generated for exposures ranging from 0.25-2.0 Gy was able to differentiate response between high and low exposure levels even at 7 d post exposure. In conclusion, the present study supports the development of the Göttingen minipig as a suitable large animal model to study radiation-induced hematopoietic syndrome.

16.
Blood ; 99(7): 2434-41, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11895776

RESUMO

We have discovered a novel canine hereditary bleeding disorder with the characteristic features of Scott syndrome, a rare defect of platelet procoagulant activity. Affected dogs were from a single, inbred colony and experienced clinical signs of epistaxis, hyphema, intramuscular hematoma, and prolonged bleeding with cutaneous bruising after surgery. The hemostatic abnormalities identified were restricted to tests of platelet procoagulant activity, whereas platelet count, platelet morphology under light microscopy, bleeding time, clot retraction, and platelet aggregation and secretion in response to thrombin, collagen, and adenosine diphosphate stimulation were all within normal limits. Washed platelets from the affected dogs demonstrated approximately twice normal clotting times in a platelet factor 3 availability assay and, in a prothrombinase assay, generated only background levels of thrombin in response to calcium ionophore, thrombin, or combined thrombin plus collagen stimulation. While platelet phospholipid content was normal, flow cytometric analyses revealed diminished phosphatidylserine exposure and a failure of microvesiculation in response to calcium ionophore, thrombin, and collagen stimulation. Pedigree studies indicate a likely homozygous recessive inheritance pattern of the defect. These findings confirm the importance of platelet procoagulant activity for in vivo hemostasis and provide a large animal model for studying agonist-induced signal transduction, calcium mobilization, and effector pathways involved in the late platelet response of transmembrane phospholipid movement and membrane vesiculation.


Assuntos
Fatores de Coagulação Sanguínea/genética , Plaquetas/fisiologia , Doenças do Cão/sangue , Hemorragia/veterinária , Animais , Plaquetas/enzimologia , Doenças do Cão/genética , Cães , Eritrócitos/enzimologia , Hemorragia/sangue , Hemorragia/genética , Lipídeos/sangue , Fosfolipídeos/sangue , Fator Plaquetário 3/análise , Protrombina/fisiologia , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA