Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 18: 84-92, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986212

RESUMO

Alterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Enoxacino/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Caenorhabditis elegans/fisiologia , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Oxirredução/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia
2.
PLoS Genet ; 9(3): e1003353, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516374

RESUMO

The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7-dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development.


Assuntos
Caenorhabditis elegans , Diferenciação Celular , Redes Reguladoras de Genes , MicroRNAs , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Fenótipo
3.
Mol Cell ; 48(2): 195-206, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22959275

RESUMO

LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.


Assuntos
Processamento Alternativo/genética , RNA Mensageiro , Proteínas de Ligação a RNA , Sítios de Ligação/genética , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Motivos de Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 105(51): 20179-84, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19088194

RESUMO

High-throughput sequencing has rapidly gained popularity for transcriptome analysis in mammalian cells because of its ability to generate digital and quantitative information on annotated genes and to detect transcripts and mRNA isoforms. Here, we described a double-random priming method for deep sequencing to profile double poly(A)-selected RNA from LNCaP cells before and after androgen stimulation. From approximately 20 million sequence tags, we uncovered 71% of annotated genes and identified hormone-regulated gene expression events that are highly correlated with quantitative real time PCR measurement. A fraction of the sequence tags were mapped to constitutive and alternative splicing events to detect known and new mRNA isoforms expressed in the cell. Finally, curve fitting was used to estimate the number of tags necessary to reach a "saturating" discovery rate among individual applications. This study provides a general guide for analysis of gene expression and alternative splicing by deep sequencing.


Assuntos
Automação/métodos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/genética , Processamento Alternativo , Androgênios/farmacologia , Animais , Linhagem Celular Tumoral , Masculino , Reação em Cadeia da Polimerase , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA