Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(6): 1376-1386, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34782585

RESUMO

Delivery of a peptide (APP96-110), derived from amyloid precursor protein (APP), has been shown to elicit neuroprotective effects following cerebral stroke and traumatic brain injury. In this study, the effect of APP96-110 or a mutant version of this peptide (mAPP96-110) was assessed following moderate (200 kdyn, (2 N)) thoracic contusive spinal cord injury (SCI) in adult Nude rats. Animals received a single tail vein injection of APP96-110 or mAPP96-110 at 30 minutes post-SCI and were then assessed for functional improvements over the next 8 weeks. A cohort of animals also received transplants of either viable or non-viable human mesenchymal stromal cells (hMSCs) into the SC lesion site at one week post-injury to assess the effect of combining intravenous APP96-110 delivery with hMSC treatment. Rats were perfused 8 weeks post-SCI and longitudinal sections of spinal cord analyzed for a number of factors including hMSC viability, cyst size, axonal regrowth, glial reactivity and macrophage activation. Analysis of sensorimotor function revealed occasional significant differences between groups using Ladderwalk or Ratwalk tests, however there were no consistent improvements in functional outcome after any of the treatments. mAPP96-110 alone, and APP96-110 in combination with both viable and non-viable hMSCs significantly reduced cyst size compared to SCI alone. Combined treatments with donor hMSCs also significantly increased ßIII tubulin+, glial fibrillary acidic protein (GFAP+) and laminin+ expression, and decreased ED1+ expression in tissues. This preliminary study demonstrates that intravenous delivery of APP96-110 peptide has selective, modest neuroprotective effects following SCI, which may be enhanced when combined with hMSC transplantation. However, the effects are less pronounced and less consistent compared to the protective morphological and cognitive impact that this same peptide has on neuronal survival and behaviour after stroke and traumatic brain injury. Thus while the efficacy of a particular therapeutic approach in one CNS injury model may provide justification for its use in other neurotrauma models, similar outcomes may not necessarily occur and more targeted approaches suited to location and severity are required. All animal experiments were approved by The University of Western Australia Animal Ethics Committee (RA3/100/1460) on April 12, 2016.

2.
Neural Plast ; 2018: 9828725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245710

RESUMO

Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations.


Assuntos
Fator Neurotrófico Ciliar/genética , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Terapia Combinada , Dependovirus , Feminino , Vetores Genéticos , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
3.
PLoS One ; 9(8): e104565, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105800

RESUMO

Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.


Assuntos
Lesões Encefálicas/radioterapia , Traumatismos do Nervo Óptico/radioterapia , Degeneração Retiniana/radioterapia , Traumatismos da Medula Espinal/radioterapia , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Lesões Encefálicas/patologia , Feminino , Raios Infravermelhos , Masculino , Nervo Óptico/patologia , Nervo Óptico/efeitos da radiação , Traumatismos do Nervo Óptico/patologia , Ratos Sprague-Dawley , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Medula Espinal/patologia , Medula Espinal/efeitos da radiação , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA