RESUMO
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Assuntos
Lectinas Tipo C/metabolismo , Sistema Linfático/metabolismo , Animais , Modelos Animais de Doenças , Humanos , CamundongosRESUMO
The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1157-165-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles. The third TCR engaged a flipped peptide conformation, leading to the recognition of off-target peptides sharing little similarity with the cognate peptide. These data show that TCRs specific for a cognate peptide recognize discrete peptide repertoires and reconciles how an individual's limited TCR repertoire following negative selection in the thymus is able to recognize a vastly larger antigenic pool.
Assuntos
Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular , Humanos , Biblioteca de PeptídeosRESUMO
Immunotherapeutic strategies have revolutionised cancer therapy in recent years, bringing meaningful improvements in outcomes for patients with previously intractable conditions. These successes have, however, been largely limited to certain types of liquid tumours and a small subset of solid tumours that are known to be particularly immunogenic. Broadening these advances across the majority of tumour indications, which are characterised by an immune-excluded, immune-deserted or immune-suppressed ('cold') phenotype, will require alternative approaches that are able to specifically address this unique biological environment. Several newer therapeutic modalities, including adoptive cell therapy and T cell redirecting bispecific molecules, are considered to hold particular promise and are being investigated in early phase clinical trials across various solid tumour indications. ImmTAC molecules are a novel class of T cell redirecting bispecific biologics that exploit TCR-based targeting of tumour cells; providing potent and highly specific access to the vast landscape of intracellular targets. The first of these reagents to reach the clinic, tebentafusp (IMCgp100), has generated demonstrable clinical efficacy in an immunologically cold solid tumour with a high unmet need. Here, we highlight the key elements of the ImmTAC platform that make it ideally positioned to overcome the cold tumour microenvironment in an off-the-shelf format.
Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Produtos Biológicos/administração & dosagem , Humanos , Imunoterapia Adotiva/métodos , Proteínas/imunologia , Anticorpos de Cadeia Única/imunologia , Antígeno gp100 de Melanoma/imunologiaRESUMO
Robust preclinical testing is essential to predict clinical safety and efficacy and provide data to determine safe dose for first-in-man studies. There are a growing number of examples where the preclinical development of drugs failed to adequately predict clinical adverse events in part due to their assessment with inappropriate preclinical models. Preclinical investigations of T cell receptor (TCR)-based immunotherapies prove particularly challenging as these biologics are human-specific and thus the conventional testing in animal models is inadequate. As these molecules harness the full force of the immune system, and demonstrate tremendous potency, we set out to design a preclinical package that would ensure adequate evaluation of these therapeutics. Immune Mobilising Monoclonal TCR Against Cancer (ImmTAC) molecules are bi-specific biologics formed of an affinity-enhanced TCR fused to an anti-CD3 effector function. ImmTAC molecules are designed to activate human T lymphocytes and target peptides within the context of a human leukocyte antigen (HLA), thus require an intact human immune system and peptidome for suitable preclinical screening. Here we draw upon the preclinical testing of four ImmTAC molecules, including IMCgp100, the first ImmTAC molecule to reach the clinic, to present our comprehensive, informative and robust approach to in vitro preclinical efficacy and safety screening. This package comprises a broad range of cellular and molecular assays using human tissues and cultured cells to test efficacy, safety and specificity, and hence predict human responses in clinical trials. We propose that this entirely in vitro package offers a potential model to be applied to screening other TCR-based biologics.
Assuntos
Anticorpos Biespecíficos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Fluxo de TrabalhoRESUMO
Adoptive T-cell therapy, incorporating engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs), target tumor antigens with high affinity and specificity. To increase the potency of adoptively transferred T cells, patients are conditioned with lymphodepleting chemotherapy regimens prior to adoptive T-cell transfer (ACT), and data suggest that fludarabine is an important component of an effective regimen. In a recent clinical trial using CAR-T cells engineered to target the CD19 B-cell antigen to treat acute lymphoblastic leukemia, JCAR-015 (NCT02535364), two patient deaths due to cerebral edema led to trial suspension. The lymphodepleting agent fludarabine was suggested as the causative agent, in part due to its known association with neurotoxicity and its ability to induce greater potency. In a similar CAR-T study also incorporating fludarabine in the preconditioning regimen, ZUMA-1 (NCT02348216), one patient died of cerebral edema. However, subsequent deaths in the JCAR-015 study after removal of fludarabine and improved understanding behind the mechanisms of CAR-T-related encephalopathy syndrome (CRES) indicate that fludarabine is not the primary causative agent of cerebral edema and that it can be safely incorporated into the preconditioning regimen for ACT. Since entering clinical use in the late 1980s as a chemotherapy agent, fludarabine and similar analogs have been associated with lethal neurological toxicity, yet the manifestation and timing of symptoms are distinct to those observed recently in ACT. Herein, we review the history of fludarabine development as a chemotherapeutic agent, and discuss the safety of its continued use in preconditioning regimens for ACT.
Assuntos
Receptores de Antígenos de Linfócitos T/uso terapêutico , Vidarabina/análogos & derivados , Antígenos CD19/imunologia , Humanos , Imunoterapia Adotiva/métodos , Síndromes Neurotóxicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Vidarabina/efeitos adversos , Vidarabina/farmacologia , Vidarabina/uso terapêuticoRESUMO
Expression of mouse C-type lectin-like receptor 2 (CLEC-2) has been reported on circulating CD11b(high) Gr-1(high) myeloid cells and dendritic cells (DCs) under basal conditions, as well as on a variety of leucocyte subsets following inflammatory stimuli or in vitro cell culture. However, previous studies assessing CLEC-2 expression failed to use CLEC-2-deficient mice as negative controls and instead relied heavily on single antibody clones. Here, we generated CLEC-2-deficient adult mice using two independent approaches and employed two anti-mouse CLEC-2 antibody clones to investigate surface expression on hematopoietic cells from peripheral blood and secondary lymphoid organs. We rule out constitutive CLEC-2 expression on resting DCs and show that CLEC-2 is upregulated in response to LPS-induced systemic inflammation in a small subset of activated DCs isolated from the mesenteric lymph nodes but not the spleen. Moreover, we demonstrate for the first time that peripheral blood B lymphocytes present exogenously derived CLEC-2 and suggest that both circulating B lymphocytes and CD11b(high) Gr-1(high) myeloid cells lose CLEC-2 following entry into secondary lymphoid organs. These results have significant implications for our understanding of CLEC-2 physiological functions.
Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/genética , Células Mieloides/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos B/patologia , Plaquetas/imunologia , Plaquetas/patologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Movimento Celular/imunologia , Células Dendríticas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/deficiência , Lipopolissacarídeos , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/patologia , Especificidade de Órgãos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Transdução de Sinais , Baço/imunologia , Baço/patologiaRESUMO
It has long been recognised that the function of platelets in health and disease span far beyond their roles in haemostasis and thrombosis. The observation that tumour cells induce platelet aggregation was followed by extensive experimental evidence linking platelets to cancer progression. Aggregated platelets coat tumour cells during their transit through the bloodstream and mediate adherence to vascular endothelium, protection from shear stresses, evasion from immune molecules, and release of an array of bioactive molecules that facilitate tumour cell extravasation and growth at metastatic sites. The sialyated membrane glycoprotein podoplanin is found on the leading edge of tumour cells and is thought to influence their migratory and invasive properties. Podoplanin elicits powerful platelet aggregation and is the endogenous ligand for the platelet C-type lectin receptor, CLEC-2, which itself regulates podoplanin signalling. Here, the bidirectional relationship between CLEC-2 and podoplanin is described and considered in the context of tumour growth and metastasis.
Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Metástase Neoplásica/fisiopatologia , Animais , Humanos , Metástase Neoplásica/patologiaRESUMO
The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other hematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that depends on CLEC-2 and Syk. These studies found that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behavior in vitro.