Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 22(10): 1472-1483, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772447

RESUMO

BACKGROUND: Tuberculosis is a major public health problem worldwide. Immunisation with Mycobacterium bovis BCG vaccine is partially effective in infants, reducing the incidence of miliary and tuberculosis meningitis, but is less effective against pulmonary tuberculosis. We aimed to compare safety and immunogenicity of VPM1002-a recombinant BCG vaccine developed to address this gap-with BCG in HIV exposed and HIV unexposed newborn babies. METHODS: This double-blind, randomised, active controlled phase 2 study was conducted at four health centres in South Africa. Eligible neonates were aged 12 days or younger with a birthweight of 2·5-4·2 kg, and could be HIV exposed (seropositive mothers) or unexposed (seronegative mothers). Newborn babies were excluded if they had acute or chronic illness, fever, hypothermia, sepsis, cancer, or congenital malformation, or if they received blood products or immunosuppressive therapy. Participants were excluded if their mothers (aged ≥18 years) had active tuberculosis disease, diabetes, a history of immunodeficiency except for HIV, hepatitis B or syphilis seropositivity, received blood products in the preceding 6 months, any acute infectious disease, or any suspected substance abuse. Participants were randomly assigned to VPM1002 or BCG vaccination in a 3:1 ratio, stratified by HIV status using the random number generator function in SAS, using a block size of eight paticipants. The primary outcome was non-inferiority (margin 15%) of VPM1002 to BCG vaccine in terms of incidence of grade 3-4 adverse drug reactions or ipsilateral or generalised lymphadenopathy of 10 mm or greater in diameter by 12 months. The primary outcome was assessed in all vaccinated participants (safety population) at regular follow-up visits until 12 months after vaccination. Secondary immunogenicity outcomes were interferon-γ levels and percentages of multifunctional CD4+ and CD8+ T cells among all lymphocytes across the 12 month study period. The study was registered with ClinicalTrials.gov, NCT02391415. FINDINGS: Between June 4, 2015 and Oct 16, 2017, 416 eligible newborn babies were randomly assigned and received study vaccine. Seven (2%) of 312 participants in the VPM1002 group had a grade 3-4 vaccine-related adverse reaction or lymphadenopathy of 10 mm or greater in diameter compared with 34 (33%) of 104 participants in the BCG group (risk difference -30·45% [95% CI -39·61% to -21·28%]; pnon-inferiority<0·0001); VPM1002 was thus non-inferior to BCG for the primary outcome. Incidence of severe injection site reactions was lower with VPM1002 than BCG: scarring occurred in 65 (21%) participants in the VPM1002 group versus 77 (74%) participants in the BCG group (p<0·0001); ulceration occurred in one (<1%) versus 15 (14%; p<0·0001); and abscess formation occurred in five (2%) versus 23 (22%; p<0·0001). Restimulated IFNγ concentrations were lower in the VPM1002 group than the BCG group at week 6, week 12, month 6, and month 12. The percentage of multifunctional CD4+ T cells was higher in the VPM1002 group than the BCG group at day 14 but lower at week 6, week 12, month 6, and month 12. The percentage of multifunctional CD8+ T cells was lower in the VPM1002 group than the BCG group at week 6, week 12, and month 6, but did not differ at other timepoints. INTERPRETATION: VPM1002 was less reactogenic than BCG and was not associated with any serious safety concern. Both vaccines were immunogenic, although responses were higher with the BCG vaccine. VPM1002 is currently being studied for efficacy and safety in a multicentric phase 3 clinical trial in babies in sub-Saharan Africa. FUNDING: Serum Institute of India.


Assuntos
Infecções por HIV , Linfadenopatia , Tuberculose , Adolescente , Adulto , Vacina BCG , Linfócitos T CD8-Positivos , Método Duplo-Cego , Infecções por HIV/tratamento farmacológico , Humanos , Imunogenicidade da Vacina , Lactente , Recém-Nascido , Interferon gama , África do Sul , Tuberculose/tratamento farmacológico
2.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408873

RESUMO

The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.


Assuntos
Mycobacterium tuberculosis , Células Supressoras Mieloides , Neoplasias , Tuberculose , Biologia , Humanos , Neoplasias/metabolismo , Tuberculose/microbiologia
3.
Front Immunol ; 12: 742059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777355

RESUMO

Mycobacterium tuberculosis (Mtb) "a human adapted pathogen" has found multiple ways to manipulate the host immune response during infection. The human immune response to Mtb infection is a highly complex cascade of reactions, with macrophages as preferred intracellular location. Interaction with the host through infection gives rise to expression of specific gene products for survival and multiplication within the host. The signals that the pathogens encounter during infection cause them to selectively express genes in response to signals. One strategy to identify Mtb antigens with diagnostic potential is to identify genes that are specifically induced during infection or in specific disease stages. The shortcomings of current immunodiagnostics include the failure to detect progression from latent infection to active tuberculosis disease, and the inability to monitor treatment efficacy. This highlights the need for new tuberculosis biomarkers. These biomarkers should be highly sensitive and specific diagnosing TB infection, specifically distinguishing between latent infection and active disease. The regulation of iron levels by the host plays a crucial role in the susceptibility and outcome of Mtb infection. Of interest are the siderophore biosynthetic genes, encoded by the mbt-1 and mbt-2 loci and the SUF (mobilization of sulphur) operon (sufR-sufB-sufD-sufC-csd-nifU-sufT), which encodes the primary iron-sulphur cluster biogenesis system. These genes are induced during iron limitation and intracellular growth of Mtb, pointing to their importance during infection.


Assuntos
Biomarcadores/metabolismo , Homeostase/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Tuberculose/metabolismo , Animais , Humanos , Mycobacterium tuberculosis
4.
Cell Immunol ; 369: 104426, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469846

RESUMO

Myeloid-derived suppressor cells (MDSC) are induced during active TB disease to restore immune homeostasis but instead exacerbate disease outcome due to chronic inflammation. Autophagy, in conventional phagocytes, ensures successful clearance of M.tb. However, autophagy has been demonstrated to induce prolonged MDSC survival. Here we investigate the relationship between autophagy mediators and MDSC in the context of active TB disease and during anti-TB therapy. We demonstrate a significant increase in MDSC frequencies in untreated active TB cases with these MDSC expressing TLR4 and significantly more mTOR and IL-6 than healthy controls, with mTOR levels decreasing during anti-TB therapy. Finally, we show that HMGB1 serum concentrations decrease in parallel with mTOR. These findings suggest a complex interplay between MDSC and autophagic mediators, potentially dependent on cellular localisation and M.tb infection state.


Assuntos
Autofagia/imunologia , Células Supressoras Mieloides/imunologia , Tuberculose/imunologia , Antituberculosos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo
5.
Front Immunol ; 12: 611673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220793

RESUMO

In tuberculosis, T cell-mediated immunity is extensively studied whilst B cells received limited attention in human and mice. Of interest, Mycobacterium tuberculosis (Mtb) does increase IL-4 Receptor-alpha (IL4Rα) expression in murine B cells. To better understand the role of IL4Rα signalling in B cells, we compared wild type mice with B cell-specific IL4Rα deficient mice (mb1creIL-4Rα-/lox mice). Chronic Mtb aerosol infection in mb1creIL-4Rα-/lox mice reduced lung and spleen bacterial burdens, compared to littermate (IL-4Rα-/lox) control animals. Consequently, lung pathology, inflammation and inducible nitric oxide synthase (iNOS) expression were reduced in the lungs of mb1creIL-4Rα-/lox mice, which was also accompanied by increased lung IgA and decreased IgG1 levels. Furthermore, intratracheal adoptive transfer of wild-type B cells into B cell-specific IL4Rα deficient mice reversed the protective phenotype. Moreover, constitutively mCherry expressing Mtb showed decreased association with B cells from mb1creIL-4Rα-/lox mice ex vivo. In addition, supernatants from Mtb-exposed B cells of mb1creIL-4Rα-/lox mice also increased the ability of macrophages to produce nitric oxide, IL-1ß, IL-6 and TNF. Together, this demonstrates that IL-4-responsive B cells are detrimental during the chronic phase of tuberculosis in mice with perturbed antibody profiles, inflammatory cytokines and tnf and stat1 levels in the lungs.


Assuntos
Linfócitos B/imunologia , Imunoglobulina A/metabolismo , Interleucina-4/metabolismo , Pulmão/metabolismo , Macrófagos/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Superfície Celular/genética , Transdução de Sinais
6.
mSphere ; 6(4): e0055221, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34287004

RESUMO

Tuberculous granulomas that develop in response to Mycobacterium tuberculosis (M. tuberculosis) infection are highly dynamic entities shaped by the host immune response and disease kinetics. Within this microenvironment, immune cell recruitment, polarization, and activation are driven not only by coexisting cell types and multicellular interactions but also by M. tuberculosis-mediated changes involving metabolic heterogeneity, epigenetic reprogramming, and rewiring of the transcriptional landscape of host cells. There is an increased appreciation of the in vivo complexity, versatility, and heterogeneity of the cellular compartment that constitutes the tuberculosis (TB) granuloma and the difficulty in translating findings from animal models to human disease. Here, we describe a novel biomimetic in vitro three-dimensional (3D) human lung spheroid granuloma model, resembling early "innate" and "adaptive" stages of the TB granuloma spectrum, and present results of histological architecture, host transcriptional characterization, mycobacteriological features, cytokine profiles, and spatial distribution of key immune cells. A range of manipulations of immune cell populations in these spheroid granulomas will allow the study of host/pathogen pathways involved in the outcome of infection, as well as pharmacological interventions. IMPORTANCE TB is a highly infectious disease, with granulomas as its hallmark. Granulomas play an important role in the control of M. tuberculosis infection and as such are crucial indicators for our understanding of host resistance to TB. Correlates of risk and protection to M. tuberculosis are still elusive, and the granuloma provides the perfect environment in which to study the immune response to infection and broaden our understanding thereof; however, human granulomas are difficult to obtain, and animal models are costly and do not always faithfully mimic human immunity. In fact, most TB research is conducted in vitro on immortalized or primary immune cells and cultured in two dimensions on flat, rigid plastic, which does not reflect in vivo characteristics. We have therefore conceived a 3D, human in vitro spheroid granuloma model which allows researchers to study features of granuloma-forming diseases in a 3D structural environment resembling in vivo granuloma architecture and cellular orientation.


Assuntos
Granuloma/microbiologia , Fenômenos Magnéticos , Modelos Biológicos , Esferoides Celulares/imunologia , Esferoides Celulares/microbiologia , Tuberculose/microbiologia , Adulto , Citocinas/análise , Citocinas/imunologia , Feminino , Granuloma/patologia , Interações Hospedeiro-Patógeno , Humanos , Técnicas In Vitro , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia
7.
J Mol Biol ; 433(13): 166984, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33845087

RESUMO

Tuberculosis (TB) disease remains a major health crisis. Infection with Mycobacterium tuberculosis (M.tb) cause a range of diseases ranging from latent infection to active TB disease. This active state of the disease is characterised by the formation of granulomas (a physical barrier in the lung), a structure thought to protect the host by controlling the infection through preventing the growth of the bacilli. Subsequently, the surviving bacteria become inactive and in most cases, TB reactivation is prevented by the immune response of the host. B-cells perform numerous immunological functions beyond antibody production to positively regulate the response to pathogenic assault. A subgroup of B-cells with regulatory functions express death-inducing ligands, such as Fas ligand (FasL). Expression and interaction of the Fas receptor-ligand promotes the induction of apoptosis and the induction of T-cell tolerance. Here, we focus on the significance of B-cells by addressing their FasL phenotype and regulatory functions during TB, with reference to disease in humans, non-human primates and mice.


Assuntos
Linfócitos B Reguladores/metabolismo , Proteína Ligante Fas/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Citocinas/biossíntese , Humanos , Modelos Biológicos
8.
Front Immunol ; 11: 596173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643286

RESUMO

Pulmonary tuberculosis (PTB) is characterized by lung granulomas, inflammation and tissue destruction. Here we used within-subject peripheral blood gene expression over time to correlate with the within-subject lung metabolic activity, as measured by positron emission tomography (PET) to identify biological processes and pathways underlying overall resolution of lung inflammation. We used next-generation RNA sequencing and [18F]FDG PET-CT data, collected at diagnosis, week 4, and week 24, from 75 successfully cured PTB patients, with the [18F]FDG activity as a surrogate for lung inflammation. Our linear mixed-effects models required that for each individual the slope of the line of [18F]FDG data in the outcome and the slope of the peripheral blood transcript expression data correlate, i.e., the slopes of the outcome and explanatory variables had to be similar. Of 10,295 genes that changed as a function of time, we identified 639 genes whose expression profiles correlated with decreasing [18F]FDG uptake levels in the lungs. Gene enrichment over-representation analysis revealed that numerous biological processes were significantly enriched in the 639 genes, including several well known in TB transcriptomics such as platelet degranulation and response to interferon gamma, thus validating our novel approach. Others not previously associated with TB pathobiology included smooth muscle contraction, a set of pathways related to mitochondrial function and cell death, as well as a set of pathways connecting transcription, translation and vesicle formation. We observed up-regulation in genes associated with B cells, and down-regulation in genes associated with platelet activation. We found 254 transcription factor binding sites to be enriched among the 639 gene promoters. In conclusion, we demonstrated that of the 10,295 gene expression changes in peripheral blood, only a subset of 639 genes correlated with inflammation in the lungs, and the enriched pathways provide a description of the biology of resolution of lung inflammation as detectable in peripheral blood. Surprisingly, resolution of PTB inflammation is positively correlated with smooth muscle contraction and, extending our previous observation on mitochondrial genes, shows the presence of mitochondrial stress. We focused on pathway analysis which can enable therapeutic target discovery and potential modulation of the host response to TB.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Tomografia por Emissão de Pósitrons , Transcriptoma , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/genética , Adolescente , Adulto , Idoso , Sítios de Ligação , Ácidos Nucleicos Livres , Biologia Computacional/métodos , Feminino , Fluordesoxiglucose F18 , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Fatores de Transcrição , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/tratamento farmacológico , Fluxo de Trabalho , Adulto Jovem
9.
Mol Immunol ; 111: 145-151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054408

RESUMO

Tuberculosis (TB) is a global epidemic with devastating consequences. Emerging evidence suggests that B-cells have the ability to modulate the immune response and understanding these roles during Mycobacterium tuberculosis (M.tb) infection can help to find new strategies to treat TB. The immune system of individuals with pulmonary TB form granulomas in the lung which controls the infection by inhibiting the M.tb growth and acts as a physical barrier. Thereafter, surviving M.tb become dormant and in most cases the host's immunity prevents TB reactivation. B-cells execute several immunological functions and are regarded as protective regulators of immune responses by antibody and cytokine production, as well as presenting antigen. Some of these B-cells, or regulatory B-cells, have been shown to express death-inducing ligands, such as Fas ligand (FasL). This expression and binding to the Fas receptor leads to apoptosis, a major immune regulation mechanism, in addition to the ability to induce T-cell tolerance. Here, I discuss the relevance of B-cells, in particular their non-humoral functions by addressing their regulatory properties during M.tb infection.


Assuntos
Linfócitos B/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Latência Viral/imunologia , Apoptose/imunologia , Proteína Ligante Fas/imunologia , Ativação Linfocitária/imunologia , Receptor fas/imunologia
10.
Immunotherapy ; 11(8): 691-704, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30966845

RESUMO

The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (Bregs). These Bregs have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of Breg type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should Bregs prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.


Assuntos
Linfócitos B Reguladores/imunologia , Tolerância Imunológica , Imunidade Celular , Animais , Humanos
11.
Int J Infect Dis ; 81: 198-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684743

RESUMO

An increased Mycobacterium tuberculosis burden inside the host leads to higher demand of response proteins. This in turn results in metabolic shift and cellular stress, which is caused by the accumulation and trafficking of these proteins within the endoplasmic reticulum (ER). To resolve this, cells trigger the unfolded protein response (UPR), which is mainly mediated by binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78) chaperone, and this in turn upregulates its transcription. This chaperone protein facilitates proper protein folding within the ER; however, it can also be passively secreted into the extracellular environment or be expressed on cell surfaces attached to anchor proteins and transmembrane proteins. This notion has been shown in studies on chronic inflammation, including cancer and arthritis, with the detection of BiP-specific antibodies from different sample types. The present study analysed secreted BiP from plasma samples collected from healthy participants and patients with newly diagnosed tuberculosis (TBdx), seen over the course of TB treatment at week 1 (W1), month 2 (M2), and month 6 (M6). The results revealed that during the initial TB disease and treatment period, cells are subjected to stress conditions resulting in metabolic shifts, which lead to the secretion of the intracellular UPR-mediating chaperone protein, BiP. This was indicated by mean differences between TBdx (mean 40.88ng/ml) and W1 (68.57ng/ml) in the TB participant groups. However, no difference was observed between the healthy group (mean 42.64ng/ml) and TBdx group (mean 40.88ng/ml). Analysis of paired time-point visits revealed increased BiP secretion during early TB treatment. The detection of BiP in plasma samples was found to decrease after successful TB treatment to levels comparable to those in the healthy controls. Evaluation of BiP levels in larger TB treatment studies may lead to the identification of a new target for early TB diagnosis and host-directed immunotherapy.


Assuntos
Antituberculosos/administração & dosagem , Proteínas de Choque Térmico/sangue , Tuberculose/sangue , Tuberculose/tratamento farmacológico , Adolescente , Adulto , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/sangue , Resposta a Proteínas não Dobradas , Regulação para Cima , Adulto Jovem
12.
Tuberculosis (Edinb) ; 108: 114-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29523310

RESUMO

Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear.


Assuntos
Linfócitos B Reguladores/imunologia , Proteína Ligante Fas/imunologia , Células Matadoras Naturais/imunologia , Tuberculose Latente/imunologia , Ativação Linfocitária , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , ADP-Ribosil Ciclase 1/sangue , ADP-Ribosil Ciclase 1/imunologia , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/microbiologia , Antígeno CD24/sangue , Antígeno CD24/imunologia , Estudos de Casos e Controles , Proliferação de Células , Proteína Ligante Fas/sangue , Interações Hospedeiro-Patógeno , Humanos , Subunidade alfa de Receptor de Interleucina-5/sangue , Subunidade alfa de Receptor de Interleucina-5/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Tuberculose Latente/sangue , Tuberculose Latente/microbiologia , Contagem de Linfócitos , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/imunologia , Fenótipo
13.
Sci Rep ; 8(1): 2675, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422548

RESUMO

We investigated host-derived biomarkers that were previously identified in QuantiFERON supernatants, in a large pan-African study. We recruited individuals presenting with symptoms of pulmonary TB at seven peripheral healthcare facilities in six African countries, prior to assessment for TB disease. We then evaluated the concentrations of 12 biomarkers in stored QuantiFERON supernatants using the Luminex platform. Based on laboratory, clinical and radiological findings and a pre-established algorithm, participants were classified as TB disease or other respiratory diseases(ORD). Of the 514 individuals included in the study, 179(34.8%) had TB disease, 274(51.5%) had ORD and 61(11.5%) had an uncertain diagnosis. A biosignature comprising unstimulated IFN-γ, MIP-1ß, TGF-α and antigen-specific levels of TGF-α and VEGF, identified on a training sample set (n = 311), validated by diagnosing TB disease in the test set (n = 134) with an AUC of 0.81(95% CI, 0.76-0.86), corresponding to a sensitivity of 64.2%(95% CI, 49.7-76.5%) and specificity of 82.7%(95% CI, 72.4-89.9%). Host biomarkers detected in QuantiFERON supernatants can contribute to the diagnosis of active TB disease amongst people presenting with symptoms requiring investigation for TB disease, regardless of HIV status or ethnicity in Africa.


Assuntos
Biomarcadores/sangue , Tuberculose Pulmonar/diagnóstico , Adulto , África/epidemiologia , Quimiocina CCL4/metabolismo , Citocinas/sangue , Feminino , Infecções por HIV/complicações , Humanos , Interferon gama/metabolismo , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Fator de Crescimento Transformador alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Am J Respir Crit Care Med ; 197(6): 801-813, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29161093

RESUMO

RATIONALE: In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. OBJECTIVES: To document the role of B cells in TB in an unbiased manner. METHODS: We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. MEASUREMENTS AND MAIN RESULTS: B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. CONCLUSIONS: Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.


Assuntos
Linfócitos B/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Tuberculose/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Transdução de Sinais , Baço/metabolismo , Baço/microbiologia
15.
Immun Inflamm Dis ; 5(1): 57-67, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250925

RESUMO

INTRODUCTION: Studies show that B-cells, in addition to producing antibodies and antigen-presentation, are able to produce cytokines as well. These include regulatory cytokines such as IL-10 by regulatory B-cells. Furthermore, a rare regulatory subset of B-cells have the potential to express FasL, which is a death-inducing ligand. This subset of B-cells have a positive role during autoimmune disease, but has not yet been studied during tuberculosis. These FasL-expressing B-cells are induced by bacterial LPS and CpG, thus we hypothesized that this phenotype might be induced during tuberculosis as well. METHODS: B-cells from participants with TB (at diagnosis and during treatment) and controls were collected, and analyzed by means of real-time PCR and flow cytometry. In addition to this, BAL was collected from TB participants as well and analyzed by means of MAGPix (multi-cytokine) technology. RESULTS: Gene expression analysis show that FASL transcript levels increase by the end of treatment. Similarly, phenotypic analysis show that there is a higher frequency of FasL-expressing B-cells by the end of treatment. CONCLUSION: Collectively, these results indicate that these FasL-expressing B-cells are being induced during anti-TB treatment, and thus may play a positive role. Further studies are required to elucidate this.


Assuntos
Antituberculosos/farmacologia , Linfócitos B/efeitos dos fármacos , Proteína Ligante Fas/genética , Tuberculose Pulmonar/genética , Antituberculosos/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Citocinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa de Receptor de Interleucina-5/genética , Fenótipo , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/imunologia
16.
Oncotarget ; 8(2): 2037-2043, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27682872

RESUMO

Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment).We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.


Assuntos
Antituberculosos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Proteína Ligante Fas/genética , Subunidade alfa de Receptor de Interleucina-5/genética , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Biomarcadores Farmacológicos , Estudos de Casos e Controles , Monitoramento de Medicamentos/métodos , Proteína Ligante Fas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Masculino , Projetos Piloto , Prognóstico , RNA Mensageiro/efeitos dos fármacos , Resultado do Tratamento , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia
17.
Am J Respir Crit Care Med ; 188(6): 724-32, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23885784

RESUMO

RATIONALE: Inadequacy of T-cell responses may result in the development of tuberculosis (TB). Myeloid-derived suppressor cells (MDSCs) have been described as suppressors of T-cell function in cancer biology and recently in several infectious diseases. OBJECTIVES: To explore the presence and role of MDSCs in TB. METHODS: We analyzed surface markers of MDSCs in peripheral blood and at the site of disease in TB cases and in patients with lung cancer, and in peripheral blood of asymptomatic tuberculin skin test-positive individuals with recent (household) or remote exposure to Mycobacterium tuberculosis (M.tb) and in uninfected healthy control subjects. To evaluate the suppressive capacity of MDSCs, cells of household contacts infected with M.tb and TB cases were isolated and cocultured with CD3(+) T cells. MEASUREMENTS AND MAIN RESULTS: Our results demonstrate an increased presence of MDSCs after recent M.tb infection and disease. We confirm their suppression of CD4(+) T-cell function, including reduced cytokine responses and inhibition of CD4(+) T-cell proliferation. Only MDSCs from TB cases reduced T-cell activation, altered T-cell trafficking, and suppressed CD8(+) T-cell functions. M.tb-expanded MDSCs were associated with significantly higher IL-1ß, IL-6, IL-8, granulocyte colony-stimulating factor, and monocyte chemotactic protein-1, and reduced granulocyte-macrophage colony-stimulating factor and macrophage inflammatory protein-1 beta levels in coculture. CONCLUSIONS: These data reveal that innate MDSCs are induced not only during active TB at similar levels as found in cancer, but also in healthy individuals after recent exposure to M.tb. These cells diminish protective T-cell responses and may contribute to the inability of hosts to eradicate the infection and add to the subsequent development of TB disease.


Assuntos
Infecções por Mycobacterium/imunologia , Mycobacterium tuberculosis/imunologia , Células Mieloides/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Citocinas/imunologia , Citometria de Fluxo/métodos , Fator Estimulador de Colônias de Granulócitos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Neoplasias Pulmonares/sangue , Infecções por Mycobacterium/sangue , Teste Tuberculínico/métodos , Tuberculose/sangue
18.
PLoS One ; 7(6): e38501, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693640

RESUMO

BACKGROUND: Recent interferon gamma (IFN-γ)-based studies have identified novel Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens as diagnostic candidates. In this study, the levels of 11 host markers other than IFN-γ, were evaluated in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens, for the diagnosis of TB disease. METHODOLOGY AND PRINCIPAL FINDINGS: Five M.tb infection phase-dependent antigens, comprising of three DosR-regulon-encoded proteins (Rv2032, Rv0081, Rv1737c), and two resucitation promoting factors (Rv0867c and Rv2389c), were evaluated in a case-control study with 15 pulmonary TB patients and 15 household contacts that were recruited from a high TB incidence setting in Cape Town, South Africa. After a 7-day whole blood culture, supernatants were harvested and the levels of the host markers evaluated using the Luminex platform. Multiple antigen-specific host markers were identified with promising diagnostic potential. Rv0081-specific levels of IL-12(p40), IP-10, IL-10 and TNF-α were the most promising diagnostic candidates, each ascertaining TB disease with an accuracy of 100%, 95% confidence interval for the area under the receiver operating characteristics plots, (1.0 to 1.0). CONCLUSIONS: Multiple cytokines other than IFN-γ in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens show promise as diagnostic markers for active TB. These preliminary findings should be verified in well-designed diagnostic studies employing short-term culture assays.


Assuntos
Biomarcadores/sangue , Tuberculose/sangue , Tuberculose/diagnóstico , Adolescente , Adulto , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Imunoensaio , Interleucina-10/sangue , Interleucina-12/sangue , Masculino , Pessoa de Meia-Idade , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA