Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 46, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454512

RESUMO

BACKGROUND: By analyzing the proteins which are the workhorses of biological systems, metaproteomics allows us to list the taxa present in any microbiota, monitor their relative biomass, and characterize the functioning of complex biological systems. RESULTS: Here, we present a new strategy for rapidly determining the microbial community structure of a given sample and designing a customized protein sequence database to optimally exploit extensive tandem mass spectrometry data. This approach leverages the capabilities of the first generation of Quadrupole Orbitrap mass spectrometer incorporating an asymmetric track lossless (Astral) analyzer, offering rapid MS/MS scan speed and sensitivity. We took advantage of data-dependent acquisition and data-independent acquisition strategies using a peptide extract from a human fecal sample spiked with precise amounts of peptides from two reference bacteria. CONCLUSIONS: Our approach, which combines both acquisition methods, proves to be time-efficient while processing extensive generic databases and massive datasets, achieving a coverage of more than 122,000 unique peptides and 38,000 protein groups within a 30-min DIA run. This marks a significant departure from current state-of-the-art metaproteomics methodologies, resulting in broader coverage of the metabolic pathways governing the biological system. In combination, our strategy and the Astral mass analyzer represent a quantum leap in the functional analysis of microbiomes. Video Abstract.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos , Bases de Dados de Proteínas
2.
Proteomics ; 23(2): e2200253, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969374

RESUMO

The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.


Assuntos
Monkeypox virus , Mpox , Humanos , Espectrometria de Massas/métodos , Monkeypox virus/isolamento & purificação , Peptídeos/análise , Proteoma , Proteômica/métodos , Proteínas Virais/química , Mpox/diagnóstico
3.
Sci Total Environ ; 722: 137803, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197158

RESUMO

Organic UV filters are of emerging concern due to their occurrence and persistence in coastal ecosystems. Because marine bacteria are crucial in the major biogeochemical cycles, there is an urgent need to understand to what extent these microorganisms are affected by those chemicals. This study deciphers the impact of five common sunscreen UV filters on twenty-seven marine bacteria, combining both photobiology and toxicity analysis on environmentally relevant species. Seven bacteria were sensitive to different organic UV filters at 1000 µg L-1, including octinoxate and oxybenzone. This is the first report demonstrating inhibition of bacterial growth from 100 µg L-1. None of the UV filters showed any toxicity at 1000 µg L-1 on stationary phase cells, demonstrating that physiological state was found to be a key parameter in the bacterial response to UV-filters. Indeed, non-growing bacteria were resistant to UV filters whereas growing cells exhibited UV filter dependent sensitivity. Octinoxate was the most toxic chemical at 1000 µg L-1 on growing cells. Interestingly, photobiology experiments revealed that the toxicity of octinoxate and homosalate decreased after light exposure while the other compounds were not affected. In terms of environmental risk characterization, our results revealed that the increasing use of sun blockers could have detrimental impacts on bacterioplanktonic communities in coastal areas. Our findings contribute to a better understanding of the impact of the most common UV filters on bacterial species and corroborate the importance to consider environmental parameters such as solar radiation in ecotoxicology studies.


Assuntos
Ecossistema , Energia Solar , Bactérias , Protetores Solares , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA