Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
iScience ; 27(3): 109283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450150

RESUMO

Small nucleolar RNAs (snoRNAs) have been identified dysregulated in several pathologies, and these alterations can be detected in tissues and in circulation. The main aim of this study was to analyze the whole snoRNome in advanced colorectal neoplasms and to identify new potential non-invasive snoRNA-based biomarkers in fecal samples by different analytical approaches. SNORA51, SNORD15B, SNORA54, SNORD12B, SNORD12C, SNORD72, SNORD89, and several members of SNORD115 and SNORD116 clusters were consistently deregulated in both tissue sets. After technical validation, SNORA51 and SNORD15B were detected in FIT+ samples. SNORA51 was significantly upregulated in FIT+ samples from CRC patients compared to healthy controls. This upregulation, together with the fecal hemoglobin concentration, was sufficient to identify, among FIT+ individuals, patients with CRC (AUC = 0.86) and individuals with advanced adenomas (AUC = 0.68). These findings portray snoRNAs as an alternative source of candidates for further studies and SNORA51 appears as a potential non-invasive biomarker for CRC detection.

2.
Sci Rep ; 13(1): 18997, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923774

RESUMO

Somatic single-nucleotide variants (SNVs) occur every time a cell divides, appearing even in healthy tissues at low frequencies. These mutations may accumulate as neutral variants during aging, or eventually, promote the development of neoplasia. Here, we present the SP-ddPCR, a droplet digital PCR (ddPCR) based approach that utilizes customized SuperSelective primers aiming at quantifying the proportion of rare SNVs. For that purpose, we selected five potentially pathogenic variants identified by whole-exome sequencing (WES) occurring at low variant allele frequency (VAF) in at-risk colon healthy mucosa of patients diagnosed with colorectal cancer or advanced adenoma. Additionally, two APC SNVs detected in two cancer lesions were added to the study for WES-VAF validation. SuperSelective primers were designed to quantify SNVs at low VAFs both in silico and in clinical samples. In addition to the two APC SNVs in colonic lesions, SP-ddPCR confirmed the presence of three out of five selected SNVs in the normal colonic mucosa with allelic frequencies ≤ 5%. Moreover, SP-ddPCR showed the presence of two potentially pathogenic variants in the distal normal mucosa of patients with colorectal carcinoma. In summary, SP-ddPCR offers a rapid and feasible methodology to validate next-generation sequencing data and accurately quantify rare SNVs, thus providing a potential tool for diagnosis and stratification of at-risk patients based on their mutational profiling.


Assuntos
Neoplasias , Humanos , Mutação , Primers do DNA , Colo , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066245

RESUMO

Background and Aims: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocytes markers and showing immature features. However, the mechanisms and the impact of hepatocyte dedifferentiation in liver disease are poorly understood. Methods: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ALD). Hepatocyte- specific overexpression or deletion of CXCR4, and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. Results: Here we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness and cancer gene programs. CXCR4 pathway was highly enriched in HB cells, and correlated with disease severity and hepatocyte dedifferentiation. In vitro , CXCR4 was associated with biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased hepatocyte specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. Conclusions: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. Lay summary: Here we describe that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis.

4.
J Hepatol ; 79(3): 728-740, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088308

RESUMO

BACKGROUND & AIMS: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS: Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS: Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.


Assuntos
Reprogramação Celular , Hepatite Alcoólica , Animais , Camundongos , Hepatite Alcoólica/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Fígado/patologia
5.
EBioMedicine ; 91: 104555, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054630

RESUMO

BACKGROUND: Reprogramming of immunosuppressive tumor-associated macrophages (TAMs) presents an attractive therapeutic strategy in cancer. The aim of this study was to explore the role of macrophage CD5L protein in TAM activity and assess its potential as a therapeutic target. METHODS: Monoclonal antibodies (mAbs) against recombinant CD5L were raised by subcutaneous immunization of BALB/c mice. Peripheral blood monocytes were isolated from healthy donors and stimulated with IFN/LPS, IL4, IL10, and conditioned medium (CM) from different cancer cell lines in the presence of anti-CD5L mAb or controls. Subsequently, phenotypic markers, including CD5L, were quantified by flow cytometry, IF and RT-qPCR. Macrophage CD5L protein expression was studied in 55 human papillary lung adenocarcinoma (PAC) samples by IHC and IF. Anti-CD5L mAb and isotype control were administered intraperitoneally into a syngeneic Lewis Lung Carcinoma mouse model and tumor growth was measured. Tumor microenvironment (TME) changes were determined by flow cytometry, IHC, IF, Luminex, RNAseq and RT-qPCR. FINDINGS: Cancer cell lines CM induced an immunosuppressive phenotype (increase in CD163, CD206, MERTK, VEGF and CD5L) in cultured macrophages. Accordingly, high TAM expression of CD5L in PAC was associated with poor patient outcome (Log-rank (Mantel-Cox) test p = 0.02). We raised a new anti-CD5L mAb that blocked the immunosuppressive phenotype of macrophages in vitro. Its administration in vivo inhibited tumor progression of lung cancer by altering the intratumoral myeloid cell population profile and CD4+ T-cell exhaustion phenotype, thereby significantly modifying the TME and increasing the inflammatory milieu. INTERPRETATION: CD5L protein plays a key function in modulating the activity of macrophages and their interactions within the TME, which supports its role as a therapeutic target in cancer immunotherapy. FUNDING: For a full list of funding bodies, please see the Acknowledgements.


Assuntos
Neoplasias Pulmonares , Macrófagos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo , Monócitos , Células Mieloides/patologia , Microambiente Tumoral
6.
Cancers (Basel) ; 14(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35954418

RESUMO

The inaccuracy of the current prognostic algorithms and the potential changes in the therapeutic management of localized ccRCC demands the development of an improved prognostic model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes. LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression analyses were performed to identify independent clinical prognostic parameters to construct a combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12, TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death (HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score (SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature was successfully developed providing a more precise assessment of the individual risk of progression.

7.
JHEP Rep ; 4(6): 100482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35540106

RESUMO

Background & Aims: The molecular mechanisms driving the progression from early-chronic liver disease (CLD) to cirrhosis and, finally, acute-on-chronic liver failure (ACLF) are largely unknown. Our aim was to develop a protein network-based approach to investigate molecular pathways driving progression from early-CLD to ACLF. Methods: Transcriptome analysis was performed on liver biopsies from patients at different liver disease stages, including fibrosis, compensated cirrhosis, decompensated cirrhosis and ACLF, and control healthy livers. We created 9 liver-specific disease-related protein-protein interaction networks capturing key pathophysiological processes potentially related to CLD. We used these networks as a framework and performed gene set-enrichment analysis (GSEA) to identify dynamic gene profiles of disease progression. Results: Principal component analyses revealed that samples clustered according to the disease stage. GSEA of the defined processes showed an upregulation of inflammation, fibrosis and apoptosis networks throughout disease progression. Interestingly, we did not find significant gene expression differences between compensated and decompensated cirrhosis, while ACLF showed acute expression changes in all the defined liver disease-related networks. The analyses of disease progression patterns identified ascending and descending expression profiles associated with ACLF onset. Functional analyses showed that ascending profiles were associated with inflammation, fibrosis, apoptosis, senescence and carcinogenesis networks, while descending profiles were mainly related to oxidative stress and genetic factors. We confirmed by qPCR the upregulation of genes of the ascending profile and validated our findings in an independent patient cohort. Conclusion: ACLF is characterized by a specific hepatic gene expression pattern related to inflammation, fibrosis, apoptosis, senescence and carcinogenesis. Moreover, the observed profile is significantly different from that of compensated and decompensated cirrhosis, supporting the hypothesis that ACLF should be considered a distinct entity. Lay summary: By using transjugular biopsies obtained from patients at different stages of chronic liver disease, we unveil the molecular pathogenic mechanisms implicated in the progression of chronic liver disease to cirrhosis and acute-on-chronic liver failure. The most relevant finding in this study is that patients with acute-on-chronic liver failure present a specific hepatic gene expression pattern distinct from that of patients at earlier disease stages. This gene expression pattern is mostly related to inflammation, fibrosis, angiogenesis, and senescence and apoptosis pathways in the liver.

8.
Clin Transl Gastroenterol ; 13(7): e00489, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404333

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is a potentially life-threatening complication of long-standing ulcerative colitis (UC). MicroRNAs (miRNA) are epigenetic regulators that have been involved in the development of UC-associated CRC. However, their role as potential mucosal biomarkers of neoplastic progression has not been adequately studied. METHODS: In this study, we analyzed the expression of 96 preselected miRNAs in human formalin-fixed and paraffin-embedded tissue of 52 case biopsies (20 normal mucosa, 20 dysplasia, and 12 UC-associated CRCs) and 50 control biopsies (10 normal mucosa, 21 sporadic adenomas, and 19 sporadic CRCs) by using Custom TaqMan Array Cards. For validation of deregulated miRNAs, we performed individual quantitative real-time polymerase chain reaction in an independent cohort of 50 cases (13 normal mucosa, 25 dysplasia, and 12 UC-associated CRCs) and 46 controls (7 normal mucosa, 19 sporadic adenomas, and 20 sporadic CRCs). RESULTS: Sixty-four miRNAs were found to be differentially deregulated in the UC-associated CRC sequence. Eight of these miRNAs were chosen for further validation. We confirmed miR-31, -106a, and -135b to be significantly deregulated between normal mucosa and dysplasia, as well as across the UC-associated CRC sequence (all P < 0.01). Notably, these miRNAs also confirmed to have a significant differential expression compared with sporadic CRC (all P < 0.05). DISCUSSION: UC-associated and sporadic CRCs have distinct miRNA expression patterns, and some miRNAs indicate early neoplastic progression.


Assuntos
Adenoma , Colite Ulcerativa , MicroRNAs , Adenoma/complicações , Adenoma/diagnóstico , Adenoma/genética , Biomarcadores/metabolismo , Colite Ulcerativa/complicações , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
J Pathol ; 257(1): 68-81, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066875

RESUMO

Optimal selection of high-risk patients with stage II colon cancer is crucial to ensure clinical benefit of adjuvant chemotherapy. Here, we investigated the prognostic value of genomic intratumor heterogeneity and aneuploidy for disease recurrence. We combined targeted sequencing, SNP arrays, fluorescence in situ hybridization, and immunohistochemistry on a retrospective cohort of 84 untreated stage II colon cancer patients. We assessed the clonality of copy-number alterations (CNAs) and mutations, CD8+ lymphocyte infiltration, and their association with time to recurrence. Prognostic factors were included in machine learning analysis to evaluate their ability to predict individual relapse risk. Tumors from recurrent patients displayed a greater proportion of CNAs compared with non-recurrent (mean 31.3% versus 23%, respectively; p = 0.014). Furthermore, patients with elevated tumor CNA load exhibited a higher risk of recurrence compared with those with low levels [p = 0.038; hazard ratio (HR) 2.46], which was confirmed in an independent cohort (p = 0.004; HR 3.82). Candidate chromosome-specific aberrations frequently observed in recurrent cases included gain of the chromosome arm 13q (p = 0.02; HR 2.67) and loss of heterozygosity at 17q22-q24.3 (p = 0.05; HR 2.69). CNA load positively correlated with intratumor heterogeneity (R = 0.52; p < 0.0001). Consistently, incremental subclonal CNAs were associated with an elevated risk of relapse (p = 0.028; HR 2.20), which we did not observe for subclonal single-nucleotide variants and small insertions and deletions. The clinico-genomic model rated an area under the curve of 0.83, achieving a 10% incremental gain compared with clinicopathological markers (p = 0.047). In conclusion, tumor aneuploidy and copy-number intratumor heterogeneity were predictive of poor outcome and improved discriminative performance in early-stage colon cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Recidiva Local de Neoplasia , Aneuploidia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Variações do Número de Cópias de DNA , Humanos , Hibridização in Situ Fluorescente , Recidiva Local de Neoplasia/genética , Prognóstico , Estudos Retrospectivos
10.
Hepatology ; 75(2): 353-368, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490644

RESUMO

BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Hepatopatias Alcoólicas/fisiopatologia , Fígado/fisiopatologia , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Vasos Sanguíneos/metabolismo , Doença Crônica , Progressão da Doença , Expressão Gênica , Ontologia Genética , Hepatite Alcoólica/patologia , Hepatite Alcoólica/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides , Gravidade do Paciente , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Células-Tronco , Regulação para Cima , Remodelação Vascular , Cicatrização , Proteínas Roundabout
11.
J Hepatol ; 75(6): 1409-1419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34437910

RESUMO

BACKGROUND & AIMS: Management of long-term immunosuppression following liver transplantation (LT) remains empirical. Surveillance liver biopsies in combination with transcriptional profiling could overcome this challenge by identifying recipients with active alloimmune-mediated liver damage despite normal liver tests, but this approach lacks applicability. Our aim was to investigate the utility of non-invasive tools for the stratification of stable long-term survivors of LT, according to their immunological risk and need for immunosuppression. METHODS: We conducted a cross-sectional multicentre study of 190 adult LT recipients assessed to determine their eligibility to participate in an immunosuppression withdrawal trial. Patients had stable liver allograft function and had been transplanted for non-autoimmune non-replicative viral liver disease >3 years before inclusion. We performed histological, immunogenetic and serological studies and measured the intrahepatic transcript levels of an 11-gene classifier highly specific for T cell-mediated rejection (TCMR). RESULTS: In this cohort, 35.8% of patients harboured clinically silent fibro-inflammatory liver lesions (13.7% had mild damage and 22.1% had moderate-to-severe damage). The severity of liver allograft damage was positively associated with TCMR-related transcripts, class II donor-specific antibodies (DSAs), ALT, AST, and liver stiffness measurement (LSM), and negatively correlated with serum creatinine and tacrolimus trough levels. Liver biopsies were stratified according to their TCMR transcript levels using a cut-off derived from biopsies with clinically significant TCMR. Two multivariable prediction models, integrating ALT+LSM or ALT+class II DSAs, had a high discriminative capacity for classifying patients with or without alloimmune damage. The latter model performed well in an independent cohort of 156 liver biopsies obtained from paediatric liver recipients with similar inclusion/exclusion criteria. CONCLUSION: ALT, class II DSAs and LSM are valuable tools to non-invasively identify stable LT recipients without significant underlying alloimmunity who could benefit from minimisation of immunosuppression. LAY SUMMARY: A large proportion of liver transplant patients with normal liver tests have inflammatory liver lesions, which in 17% of cases are molecularly indistinguishable from those seen at the time of rejection. ALT, class II donor-specific antibodies and liver stiffness are useful in identifying patients with this form of subclinical rejection. We propose these markers as a useful tool to help clinicians determine if the immunosuppression administered is adequate.


Assuntos
Hemocromatose/diagnóstico , Transplante de Fígado/efeitos adversos , Medição de Risco/normas , Adulto , Idoso , Biópsia/métodos , Biópsia/estatística & dados numéricos , Estudos Transversais , Feminino , Hemocromatose/epidemiologia , Humanos , Transplante de Fígado/métodos , Transplante de Fígado/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Tolerância ao Transplante
12.
Cancers (Basel) ; 13(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072510

RESUMO

The poor prognosis of chronic liver disease (CLD) generates the need to investigate the evolving mechanisms of disease progression, thus disclosing therapeutic targets before development of clinical complications. Considering the central role of liver sinusoidal endothelial cells (LSECs) in pre-neoplastic advanced CLD, the present study aimed at investigating the progression of CLD from an endothelial holistic perspective. RNAseq defined the transcriptome of primary LSECs isolated from three pre-clinical models of advanced CLD, during the progression of the disease, and from fresh human cirrhotic tissue. At each stage of the disease, the effects of LSECs secretome on neighboring cells and proteomic analysis of LSECs-derived extracellular vesicles (EVs) were also determined. CLD was associated with deep common modifications in the transcriptome of LSECs in the pre-clinical models. Pathway enrichment analysis showed predominance of genes related with pro-oncogenic, cellular communication processes, and EVs biogenesis during CLD progression. Crosstalk experiments revealed endothelial EVs as potent angiocrine effectors. The proteome of LSECs EVs showed stage-specific signatures, including over-expression of tropomyosin-1. Proof-of-principle experiments treating cirrhotic HSCs with recombinant tropomyosin-1 suggested de-activating effects. Our data provide the basis for discovering novel biomarkers and therapeutic targets for new disease-modifying treatments for patients with advanced CLD.

13.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069007

RESUMO

Intraductal papillary mucinous neoplasms (IPMN) are pancreatic cystic lesions that can develop into pancreatic ductal adenocarcinoma (PDAC). Although there is an increasing incidence of IPMN diagnosis, the mechanisms of formation and progression into invasive cancer remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs, repressors of mRNA translation, and promising diagnostic biomarkers for IPMN and PDAC. Functional information on the role of early-altered miRNAs in this setting would offer novel strategies for tracking the IPMN-to-PDAC progression. In order to detect mRNAs that are likely to be under miRNA regulation in IPMNs, whole transcriptome and miRNome data from normal pancreatic tissue (n = 3) and IPMN lesions (n = 4) were combined and filtered according to negative correlation and miRNA-target prediction databases by using miRComb R package. Further comparison analysis with PDAC data allowed us to obtain a subset of miRNA-mRNA pairs shared in IPMN and PDAC. Functional enrichment analysis unravelled processes that are mainly related with cell structure, actin cytoskeleton, and metabolism. MiR-181a appeared as a master regulator of these processes. The expression of selected miRNA-mRNA pairs was validated by qRT-PCR in an independent cohort of patients (n = 40), and then analysed in different pancreatic cell lines. Finally, we generated a cellular model of HPDE cells stably overexpressing miR-181a, which showed a significant alteration of actin cytoskeleton structures accompanied by a significant downregulation of EPB41L4B and SEL1L expression. In situ hybridization of miR-181a and immunohistochemistry of EPB41L4B and SEL1L in pancreatic tissues (n = 4 Healthy; n = 3 IPMN; n = 4 PDAC) were also carried out. In this study, we offer insights on the potential implication of miRNA alteration in the regulation of structural and metabolic changes that pancreatic cells experience during IPMN establishment and that are maintained in PDAC.

14.
Sci Rep ; 11(1): 6132, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731721

RESUMO

This study aimed to ascertain gene expression profile differences between progressive muscle-invasive bladder cancer (MIBC) and de novo MIBC, and to identify prognostic biomarkers to improve patients' treatment. Retrospective multicenter study in which 212 MIBC patients who underwent radical cystectomy between 2000 and 2019 were included. Gene expression profiles were determined in 26 samples using Illumina microarrays. The expression levels of 94 genes were studied by quantitative PCR in an independent set of 186 MIBC patients. In a median follow-up of 16 months, 46.7% patients developed tumor progression after cystectomy. In our series, progressive MIBC patients show a worse tumor progression (p = 0.024) and cancer-specific survival (CSS) (p = 0.049) than the de novo group. A total of 480 genes were found to be differently expressed between both groups. Differential expression of 24 out of the 94 selected genes was found in an independent cohort. RBPMC2 and DSC3 were found as independent prognostic biomarkers of tumor progression and CALD1 and LCOR were identified as prognostic biomarkers of CSS between both groups. In conclusion, progressive and de novo MIBC patients show different clinical outcome and gene expression profiles. Gene expression patterns may contribute to predict high-risk of progression to distant metastasis or CSS.


Assuntos
Biomarcadores Tumorais/metabolismo , Cistectomia/métodos , Neoplasias Musculares/patologia , Neoplasias da Bexiga Urinária , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Estudos Retrospectivos , Transcriptoma , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
15.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525650

RESUMO

The genetic cause for several families with gastric cancer (GC) aggregation is unclear, with marked relevance in early-onset patients. We aimed to identify new candidate genes involved in GC germline predisposition. Whole-exome sequencing (WES) of germline samples was performed in 20 early-onset GC patients without previous germline mutation identified. WES was also performed in nine tumor samples to analyze the somatic profile using SigProfilerExtractor tool. Sequencing germline data were filtered to select those variants with plausible pathogenicity, rare frequency and previously involved in cancer. Then, a manual filtering was performed to prioritize genes according to current knowledge and function. These genetic variants were prevalidated with Integrative Genomics Viewer 2.8.2 (IGV). Subsequently, a further selection step was carried out according to function and information obtained from tumor samples. After IGV and selection step, 58 genetic variants in 52 different candidate genes were validated by Sanger sequencing. Among them, APC, FAT4, CTNND1 and TLR2 seem to be the most promising genes because of their role in hereditary cancer syndromes, tumor suppression, cell adhesion and Helicobacter pylori recognition, respectively. These encouraging results represent the open door to the identification of new genes involved in GC germline predisposition.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Caderinas/genética , Cateninas/genética , Mutação em Linhagem Germinativa , Neoplasias Gástricas/genética , Receptor 2 Toll-Like/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idade de Início , Idoso , Detecção Precoce de Câncer , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , delta Catenina
16.
Hepatology ; 74(1): 296-311, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33219516

RESUMO

BACKGROUND AND AIMS: Bacterial infections are common and severe in cirrhosis, but their pathogenesis is poorly understood. Dysfunction of liver macrophages may play a role, but information about their function in cirrhosis is limited. Our aims were to investigate the specific profile and function of liver macrophages in cirrhosis and their contribution to infections. Macrophages from human cirrhotic livers were characterized phenotypically by transcriptome analysis and flow cytometry; function was assessed in vivo by single photon emission computerized tomography in patients with cirrhosis. Serum levels of specific proteins and expression in peripheral monocytes were determined by ELISA and flow cytometry. In vivo phagocytic activity of liver macrophages was measured by spinning disk intravital microscopy in a mouse model of chronic liver injury. APPROACH AND RESULTS: Liver macrophages from patients with cirrhosis overexpressed proteins related to immune exhaustion, such as programmed death ligand 1 (PD-L1), macrophage receptor with collagenous structure (MARCO), and CD163. In vivo phagocytic activity of liver macrophages in patients with cirrhosis was markedly impaired. Monocytes from patients with cirrhosis showed overexpression of PD-L1 that paralleled disease severity, correlated with its serum levels, and was associated with increased risk of infections. Blockade of PD-L1 with anti-PD-L1 antibody caused a shift in macrophage phenotype toward a less immunosuppressive profile, restored liver macrophage in vivo phagocytic activity, and reduced bacterial dissemination. CONCLUSION: Liver cirrhosis is characterized by a remarkable impairment of phagocytic function of macrophages associated with an immunosuppressive transcriptome profile. The programmed cell death receptor 1/PD-L1 axis plays a major role in the impaired activity of liver macrophages. PD-L1 blockade reverses the immune suppressive profile and increases antimicrobial activity of liver macrophages in cirrhosis.


Assuntos
Antígeno B7-H1/metabolismo , Infecções Bacterianas/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Cirrose Hepática/imunologia , Macrófagos/imunologia , Idoso , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Infecções Bacterianas/prevenção & controle , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fagocitose , Cultura Primária de Células , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Índice de Gravidade de Doença
17.
J Hepatol ; 74(5): 1117-1131, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33276029

RESUMO

BACKGROUND & AIMS: Systemic inflammation and organ failure(s) are the hallmarks of acute-on-chronic liver failure (ACLF), yet their pathogenesis remains uncertain. Herein, we aimed to assess the role of amino acids in these processes in patients with ACLF. METHODS: The blood metabolomic database of the CANONIC study (comprising 137 metabolites, with 43% related to amino acids) - obtained in 181 patients with ACLF and 650 with acute decompensation without ACLF (AD) - was reanalyzed with a focus on amino acids, in particular 9 modules of co-regulated metabolites. We also compared blood metabolite levels between ACLF and AD. RESULTS: The main findings in ACLF were: i) Metabolite modules were increased in parallel with increased levels of markers of systemic inflammation and oxidative stress. ii) Seventy percent of proteinogenic amino acids were present and most were increased. iii) A metabolic network, comprising the amino acids aspartate, glutamate, the serine-glycine one-carbon metabolism (folate cycle), and methionine cycle, was activated, suggesting increased purine and pyrimidine nucleotide synthesis. iv) Cystathionine, L-cystine, glutamate and pyroglutamate, which are involved in the transsulfuration pathway (a methionine cycle branch) were increased, consistent with increased synthesis of the antioxidant glutathione. v) Intermediates of the catabolism of 5 out of the 6 ketogenic amino acids were increased. vi) The levels of spermidine (a polyamine inducer of autophagy with anti-inflammatory effects) were decreased. CONCLUSIONS: In ACLF, blood amino acids fueled protein and nucleotide synthesis required for the intense systemic inflammatory response. Ketogenic amino acids were extensively catabolized to produce energy substrates in peripheral organs, an effect that was insufficient because organs failed. Finally, the decrease in spermidine levels may cause a defect in autophagy contributing to the proinflammatory phenotype in ACLF. LAY SUMMARY: Systemic inflammation and organ failures are hallmarks of acute-on-chronic liver failure (ACLF). Herein, we aimed to characterize the role of amino acids in these processes. The blood metabolome of patients with acutely decompensated cirrhosis, and particularly those with ACLF, reveals evidence of intense skeletal muscle catabolism. Importantly, amino acids (along with glucose), are used for intense anabolic, energy-consuming metabolism in patients with ACLF, presumably to support de novo nucleotide and protein synthesis in the activated innate immune system.


Assuntos
Insuficiência Hepática Crônica Agudizada , Aminoácidos , Inflamação/metabolismo , Metaboloma/imunologia , Insuficiência de Múltiplos Órgãos , Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Insuficiência Hepática Crônica Agudizada/fisiopatologia , Aminoácidos/classificação , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Feminino , Humanos , Cirrose Hepática/complicações , Masculino , Redes e Vias Metabólicas/fisiologia , Metabolismo/fisiologia , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Prognóstico , Biossíntese de Proteínas/fisiologia , Índice de Gravidade de Doença
18.
Urol Oncol ; 39(8): 493.e17-493.e25, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33189527

RESUMO

OBJECTIVE: The purpose of the study was to develop an improved classifier for predicting biochemical recurrence (BCR) in clinically localized PCa patients after radical prostatectomy. METHODS AND MATERIALS: Retrospective study including 122 PCa patients who attended our department between 2000 and 2007. Gene expression patterns were analyzed in 21 samples from 7 localized, 6 locally advanced, and 8 metastatic PCa patients using Illumina microarrays. Expression levels of 41 genes were validated by quantitative PCR in 101 independent PCa patients who underwent radical prostatectomy. Logistic regression analysis was used to identify individual predictors of BCR. A risk score for predicting BCR including clinicopathological and gene expression variables was developed. Interaction networks were built by GeneMANIA Cytoscape plugin. RESULTS: A total of 37 patients developed BCR (36.6%) in a median follow-up of 120 months. Expression levels of 7,930 transcripts differed between clinically localized and locally advanced-metastatic PCa groups (FDR < 0.1). We found that expression of ASF1B and MCL1 as well as Gleason score, extracapsular extension, seminal vesicle invasion, and positive margins were independent prognostic factors of BCR. A risk score generated using these variables was able to discriminate between 2 groups of patients with a significantly different probability of BCR (HR 6.24; CI 3.23-12.4, P< 0.01), improving the individual discriminative performance of each of these variables on their own. Direct interactions between the 2 genes of the model were not found. CONCLUSION: Combination of gene expression patterns and clinicopathological variables in a robust, easy-to-use, and reliable classifier may contribute to improve PCa risk stratification.


Assuntos
Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/diagnóstico , Antígeno Prostático Específico/sangue , Prostatectomia/efeitos adversos , Neoplasias da Próstata/cirurgia , Glândulas Seminais/patologia , Idoso , Seguimentos , Humanos , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
19.
Front Oncol ; 10: 594023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224888

RESUMO

The prostatic tumor cells plasticity is involved in resistance to hormone-therapy, allowing these cells to survive despite androgen receptor inhibition. However, its role in taxanes resistance has not been fully established. Gene expression of plasticity-related phenotypes such as epithelial-mesenchymal transition (EMT), stem cell-like and neuroendocrine (NE) phenotypes was studied in vitro, in silico, in circulating tumor cells (CTCs) (N=22) and in tumor samples (N=117) from taxanes-treated metastatic castration-resistant prostate cancer (mCRPC) patients. Docetaxel (D)-resistant cells presented a more pronounced EMT phenotype than cabazitaxel (CZ)-resistant cells. In silico analysis revealed ESRP1 down-regulation in taxane-exposed mCRPC samples. Cell plasticity-related changes occurred in CTCs after taxanes treatment. Tumor EMT phenotype was associated with lower PSA progression-free survival (PFS) to D (P<0.001), and better to CZ (P=0.002). High ESRP1 expression was independently associated with longer PSA-PFS (P<0.001) and radiologic-PFS (P=0.001) in D and shorter PSA-PFS in the CZ cohort (P=0.041). High SYP expression was independently associated with lower PSA-PFS in D (P=0.003) and overall survival (OS) in CZ (P=0.002), and high EZH2 expression was associated with adverse OS in D-treated patients (P=0.013). In conclusion, EMT profile in primary tumor is differentially associated with D or CZ benefit and NE dedifferentiation correlates with adverse taxanes clinical outcome.

20.
Oncogenesis ; 9(5): 43, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366853

RESUMO

Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA