Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(37): 11419-11428, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225498

RESUMO

Low-concentration ether electrolytes cannot efficiently achieve oxidation resistance and excellent interface behavior, resulting in severe electrolyte decomposition at a high voltage and ineffective electrode-electrolyte interphase. Herein, we utilize sandwich structure-like gel polymer electrolyte (GPE) to enhance the high voltage stability of potassium-ion batteries (PIBs). The GPE contact layer facilitates stable electrode-electrolyte interphase formation, and the GPE transport layer maintains good ionic transport, which enabled GPE to exhibit a wide electrochemical window and excellent electrochemical performance. In addition, Al corrosion under a high voltage is suppressed through the restriction of solvent molecules. Consequently, when using the designed GPE (based on 1 m), the K||graphite cell exhibits excellent cycling stability of 450 cycles with a capacity retention of 91%, and the K||FeFe-Prussian blue cell (2-4.2 V) delivers a high average Coulombic efficiency of 99.9% over 2200 cycles at 100 mA g-1. This study provides a promising path in the application of ether-based electrolytes in high-voltage and long-lasting PIBs.

2.
Proc Natl Acad Sci U S A ; 121(31): e2319193121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052833

RESUMO

Iron-based hexacyanoferrate (Fe-HCF) are promising cathode materials for sodium-ion batteries (SIBs) due to their unique open-channel structure that facilitates fast ion transport and framework stability. However, practical implementation of SIBs has been hindered by low initial Coulombic efficiency (ICE), poor rate performance, and short lifespan. Herein, we report a coordination engineering to synthesize sodium-rich Fe-HCF as cathodes for SIBs through a uniquely designed 10-kg-scale chemical reactor. Our study systematically investigated the relationship between coordination surroundings and the electrochemical behavior. Building on this understanding, the cathode delivered a reversible capacity of 99.3 mAh g-1 at 5 C (1 C = 100 mA g-1), exceptional rate capability (51 mAh g-1 even at 100 C), long lifespan (over 15,000 times at 50 C), and a high ICE of 92.7%. A full cell comprising the Fe-HCF cathode and hard carbon (HC) anode exhibited an impressive cyclic stability with a high-capacity retention rate of 98.3% over 1,000 cycles. Meanwhile, this material can be readily scaled to the practical levels of yield. The findings underscore the potential of Fe-HCF as cathodes for SIBs and highlight the significance of controlling nucleation and morphology through coordination engineering for a sustainable energy storage system.

3.
Angew Chem Int Ed Engl ; 63(23): e202403269, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597257

RESUMO

Ether-based electrolyte is beneficial to obtaining good low-temperature performance and high ionic conductivity in potassium ion batteries. However, the dilute ether-based electrolytes usually result in ion-solvent co-intercalation of graphite, poor cycling stability, and hard to withstand high voltage cathodes above 4.0 V. To address the aforementioned issues, an electron-withdrawing group (chloro-substitution) was introduced to regulate the solid-electrolyte interphase (SEI) and enhance the oxidative stability of ether-based electrolytes. The dilute (~0.91 M) chloro-functionalized ether-based electrolyte not only facilitates the formation of homogeneous dual halides-based SEI, but also effectively suppress aluminum corrosion at high voltage. Using this functionalized electrolyte, the K||graphite cell exhibits a stability of 700 cycles, the K||Prussian blue (PB) cell (4.3 V) delivers a stability of 500 cycles, and the PB||graphite full-cell reveals a long stability of 6000 cycles with a high average Coulombic efficiency of 99.98 %. Additionally, the PB||graphite full-cell can operate under a wide temperature range from -5 °C to 45 °C. This work highlights the positive impact of electrolyte functionalization on the electrochemical performance, providing a bright future of ether-based electrolytes application for long-lasting, wide-temperature, and high Coulombic efficiency PIBs and beyond.

4.
Angew Chem Int Ed Engl ; 62(49): e202312973, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37846843

RESUMO

Ether-based electrolytes are promising for secondary batteries due to their good compatibility with alkali metal anodes and high ionic conductivity. However, they suffer from poor oxidative stability and high toxicity, leading to severe electrolyte decomposition at high voltage and biosafety/environmental concerns when electrolyte leakage occurs. Here, we report a green ether solvent through a rational design of carbon-chain regulation to elicit steric hindrance, such a structure significantly reducing the solvent's biotoxicity and tuning the solvation structure of electrolytes. Notably, our solvent design is versatile, and an anion-dominated solvation structure is favored, facilitating a stable interphase formation on both the anode and cathode in potassium-ion batteries. Remarkably, the green ether-based electrolyte demonstrates excellent compatibility with K metal and graphite anode and a 4.2 V high-voltage cathode (200 cycles with average Coulombic efficiency of 99.64 %). This work points to a promising path toward the molecular design of green ether-based electrolytes for practical high-voltage potassium-ion batteries and other rechargeable batteries.

5.
Chem Sci ; 13(34): 10066-10073, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128225

RESUMO

Aqueous aluminum ion batteries (AAIBs) have received growing attention because of their low cost, safe operation, eco-friendliness, and high theoretical capacity. However, one of the biggest challenges for AAIBs is the poor reversibility due to the presence of an oxide layer and the accompanying hydrogen evolution reaction. Herein, we develop a strongly hydrolyzed/polymerized aluminum-iron hybrid electrolyte to improve the electrochemical behavior of AAIBs. On the one hand, the designed electrolyte enables aluminum ion intercalation/deintercalation on the cathode while stable deposition/stripping of aluminium occurs on the anode. On the other hand, the electrolyte contributes to the electrochemical energy storage through an iron redox reaction. These two reactions are parallel and coupled through an Fe-Al alloy on the anode, thus enhancing the reversibility and energy density of AAIBs. As a result, this hybrid-ion battery delivers a specific volumetric capacity of 35 A h L-1 at the current density of 1.0 mA cm-2, and remarkable stability with a capacity retention of 90% over 500 cycles. Furthermore, the hybrid-ion battery achieves a high energy density of approximately 42 W h L-1 with an average operating voltage of 1.1 V. This green electrolyte for high-energy AAIBs holds promises for large-scale energy storage applications.

6.
Angew Chem Int Ed Engl ; 61(33): e202208291, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35713155

RESUMO

Conventional ether-based electrolytes exhibited a low polarization voltage in potassium-ion batteries, yet suffered from ion-solvent co-intercalation phenomena in a graphite anode, inferior potassium-metal performance, and limited oxidation stability. Here, we reveal that weakening the cation-solvent interactions could suppress the co-intercalation behaviour, enhance the potassium-metal performance, and improve the oxidation stability. Consequently, the graphite anode exhibits K+ intercalation behaviour (K||graphite cell operates 200 cycles with 86.6 % capacity retention), the potassium metal shows highly stable plating/stripping (K||Cu cell delivers 550 cycles with average Coulombic efficiency of 98.9 %) and dendrite-free (symmetric K||K cell operates over 1400 hours) properties, and the electrolyte exhibits high oxidation stability up to 4.4 V. The ion-solvent interaction tuning strategy provides a promising method to develop high-performance electrolytes and beyond.

7.
ACS Appl Mater Interfaces ; 11(47): 44352-44359, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670939

RESUMO

The porous structure composed of non-metal elements of covalent organic frameworks (COFs) contributes to a large surface area and multifunction, rendering COFs a brilliant material for energy storage. Unfortunately, the low conductivity of most COFs limits their application in batteries. Herein, we fabricate COF-derived nitrogen-doped porous carbon (NPC) using nitrogen-rich COF-JLU2 as precursors by a simple carbonization for potassium-ion batteries (PIBs) and aluminum (Al) batteries for the first time. The computational results suggest that NPC has an enhanced conductivity and optimized electron density distribution. NPC could overcome the low conductivity of COF and thus further optimize its electrochemical performance in PIBs and Al batteries. It displays an excellent stability even after 2500 cycles (as the anode for PIBs) and 30000 cycles (as the cathode for Al batteries) with a high Coulombic efficiency. This fascinating study may be extended in other COFs for energy storage applications.

8.
ACS Nano ; 13(9): 10631-10642, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31491083

RESUMO

Graphene is of great significance in energy storage devices. However, a graphene-based electrode is difficult to use in direct applications due to the large surface area and flexibility, which leads to the excessive consumption of electrolyte, low Coulombic efficiency, and electrode shedding behaviors. Herein, a special crystal carbon@graphene microsphere (CCGM) composite was successfully synthesized. The scalable carbonaceous microsphere composite displays a small specific surface area and a superior structure stability. As a potassium ion battery electrode in a half-cell, CCGM delivers an initial capacity of 297.89 mAh g-1 with a high Coulombic efficiency of about 99%. It achieves an excellent cyclic stability with no capacity loss after 1250 cycles at the low current density of 100 mA g-1 with a long performing period of more than one year. As the cathode for an aluminum battery, a reversible specific capacity of 99.1 mAh g-1 at 1000 mA g-1 is obtained. CCGM delivers a long cycle performance of about 10 000 cycles at 4000 mA g-1 with a capacity retention of nearly 100%. Our design provides a fresh thought for the improvement of graphene-based materials, and it will greatly facilitate the application of graphene in the field of energy storage.

9.
ACS Nano ; 12(8): 8456-8466, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30048113

RESUMO

This design provides a scalable route for in situ synthesizing of special carbon nanoscrolls as the cathode for an aluminum battery. The frizzy architectures are generated by a few graphene layers convoluting into the hollow carbon scroll, possessing rapid electronic transportation channels, superior anion storage capability, and outstanding ability of accommodating a large volume expansion during the cycling process. The electrochemical performance of the carbon nanoscroll cathode is fully tapped, displaying an excellent reversible discharge capacity of 104 mAh g-1 at 1000 mA g-1. After 55 000 cycles, this cathode retains a superior reversible specific capacity of 101.24 mAh g-1 at an ultrafast rate of 50 000 mA g-1, around 100% of the initial capacity, which demonstrates a superior electrochemical performance. In addition, anionic storage capability and structural stability are discussed in detail. The battery capacity under a wide temperature range from -80 to 120 °C is examined. At a low temperature of -25 °C, the battery delivers a discharge capacity of 62.83 mAh g-1 after 10 000 cycles, obtaining a capacity retention near 100%. In addition, it achieves a capacity of 99.5 mAh g-1 after 4000 cycles at a high temperature of 80 °C, with a capacity retention close to 100%. The carbon nanoscrolls possess an outstanding ultrafast charging/variable discharging rate performance surpassing all the batteries previously reported, which are highly promising for being applied in energy storage fields.

10.
Nanoscale ; 4(11): 3475-81, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22572999

RESUMO

A high-efficiency photoelectrode for dye-sensitized solar cells (DSSCs) should combine the advantageous features of fast electron transport, slow interfacial electron recombination and large specific surface area. However, these three requirements usually cannot be achieved simultaneously in the present state-of-the-art research. Here we report a simple procedure to combine the three conflicting requirements by using porous SnO(2) nanotube-TiO(2) (SnO(2) NT-TiO(2)) core-shell structured photoanodes for DSSCs. The SnO(2) nanotubes are prepared by electrospinning of polyvinyl pyrrolidone (PVP)/tin dichloride dihydrate (SnCl(2)·2H(2)O) solution followed by direct sintering of the as-spun nanofibers. A possible evolution mechanism is proposed. The power conversion efficiency (PCE) value of the SnO(2) NT-TiO(2) core-shell structured DSSCs (∼5.11%) is above five times higher than that of SnO(2) nanotube (SnO(2) NT) DSSCs (∼0.99%). This PCE value is also higher than that of TiO(2) nanoparticles (P25) DSSCs (∼4.82%), even though the amount of dye molecules adsorbed to the SnO(2) NT-TiO(2) photoanode is less than half of that in the P25 film. This simple procedure provides a new approach to achieve the three conflicting requirements simultaneously, which has been demonstrated as a promising strategy to obtain high-efficiency DSSCs.


Assuntos
Corantes/química , Nanotubos/química , Energia Solar , Compostos de Estanho/química , Titânio/química , Eletrodos , Povidona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA